大专毕业论文

数控切割编程工艺分析与技巧论文

时间:2022-10-08 23:16:54 大专毕业论文 我要投稿
  • 相关推荐

数控切割编程工艺分析与技巧论文

  数控切割编程工艺分析与技巧论文【1】

数控切割编程工艺分析与技巧论文

  【摘 要】数控切割技术具有切割精度较高、外观质量好、速度快、整体下料布局合理、材料利用率高等特点。

  但如果没有很好的掌握计算机编程方法,就会使这些优势逊色不少,本文重点分析数控切割编程过程中的一些常见问题,归纳总结出对应的解决办法和技巧。

  【关键词】数控切割;编程技巧

  在金属结构件制造中,许多构(零)件形状比较复杂或不规则,数控切割机床的出现使得这些零件的加工成为可能,切割程序是数控切割机的指挥中枢,编程人员在电脑上进行绘图、套料、编程,生成数控切割指令,然后输入切割机,机器接受“命令”去实现人的“意图”。

  因此编程技术的优劣直接影响切割的质量和效率,好的程序可以做到:同样板材尺寸切的零件更多;相同切割任务切得更快;同样切割设备切得更好;同样切割方法切得更省。

  概括来说就是四个字“多、快、好、省”。

  目前工厂里使用的套料软件多分为三大模块:(1)Fast CAM:CAD优化处理;(2)Fast NEST 设置切割路径、套料生成程序;(3)Fast PLOT模拟切割、校验。

  本文将对编程过程经常遇到的一些工艺性问题进行分析,并针对问题找出相应的解决办法,探索几点对于数控切割质量、效率有所提高的技巧。

  1 合理选择引入点(打火点)

  引入点是数控切割机在钢板上穿孔切割的起始点,由于切割过程中首先规定了切割的方向(顺、逆时针),在切割过程中会出现因引入点设置不当,工作台面无法完全承托零件造成移位、跑偏、落空等现象,直接影响切割质量和零件合格率。

  因此在选择引入点时,应遵循工件未切割边在切割过程中尽可能的与大板相连,减少因零件自身重量和热变形产生的位移而导致的切割不精确。

  如图 1:切割的引入点应选在 1 处且逆时针切割,切割的大部分时间工件与大的母板相连,可做到切割过程变形最少,如果选在其他位置,以3为例,逆时针切割,当割完了 3-4-2-1时已完全割断了工件与大板的联系,在切割 1-3 时工件很容易因热应力发生位移导致切割不精确。

  2. 共边与连续切割

  共边切割与连续切割不仅可以提高钢材的利用率、节省钢材,而且可以减少穿孔次数,节省预热穿孔时间,提高切割效率。

  连续切割功能可以替代桥接功能,使相邻的几个零件做到连续切割,避免了预热穿孔,从而有效节省割嘴、预热氧,提高切割效率,节省耗材。

  如图2所示,采用了共边切割模式切割两个零件1和2,一条割缝切出了零件1的上边和零件2的下边,切割1、2的左边同时切出了零件7和8的右边,这种切割模式既节省了材料又提高了工作效率。

  整个过程只打一次引入孔,实现了一次打孔多零件切割,减少了预热、打孔和切割时间。

  3. 切割顺序的选择

  切割顺序是指对钢板上若干大小嵌套的套排零件依次进行切割的顺序,根据零件的形状,分析其切割时的变形特点,确定合理的切割顺序可使零件受热均匀,零件内部受力相互牵制,这就减少了变形。

  切割顺序一般应遵守以下原则:先内后外,先小后大,先圆后方,交叉跳跃,先繁后简等。

  假如后割内轮廓、小零件,会造成定位不可靠,产生移位,导致零件精度降低。

  4. 切割方向的影响

  正确的切割方向应该保证最后一条割边才与母板大板部分脱离,如果过早的与母板大板脱离,则零件周边的余料角框刚性无法抵抗切割过程中出现的热变形,造成切割件在切割过程中产生位移而变形,这也会导致切割精度降低。

  5. 平滑过渡切割

  在切割直角零件时,尖锐过渡的方式容易产生过烧的现象,实质是切割进行到拐角尖时有一个速度下跌甚至停顿而引起。

  这种情形致使切割零件尺寸超差,机床寿命也受影响。

  避免的方法是编程时将角部更改为一个微小圆弧,使其变为平滑过渡形式,可较好的提高切割质量,且对保护机床也有很大好处。

  6. 热变形与跑偏控制

  在火焰切割过程中,由于板材的热胀冷缩、零件受热不均匀和零件形状特异、打火点设置不当等原因,极易造成零件热变形和跑偏现象,从而影响切割精度和零件合格率。

  6.1 对于板材的热涨尺寸偏移,按照切割枪嘴线能量和长度尺寸补偿的策略,可在枪嘴较为集中影响的尺寸增加0.5~1mm补偿量,具体数值掌握需结合对应设备并经长期实践获得。

  6.2 对于零件受热不均匀的情形,如在小范围单个小零件周边或大零件集中切割处,除采取尺寸补偿的办法外还可采用分散切割的方式。

  就是让切割不要过于集中,不要一次性全部切割完毕,可在切割一部分形状后转移到另外位置切割,而后再返回到原处切割,既保证该处温度不至于过高而导致零件热变形,也可让板材受热趋于均匀不易发生跑偏现象,但其缺点是切割时空程增加。

  7. 排版、布局合理

  当多种类、多数量零件需在同一张板料上切割时,编程就需考虑合理排版、布局的问题,需统筹考虑板材尺寸和各个零件的外形尺寸,可采用多种零件混编和单个零件集中切割相结合的策略,应遵守以下原则:先排大零件后插小零件,按照板材大小先将大零件依次排列好,然后在大零件连接的余料处逐个插入小零件,这种模式可有效提高材料的利用率。

  综上所述,编程的优劣对数控切割起着关键性的作用,实践中只有将丰富的切割经验和优化工艺融入程序中,针对不同零件采用对应的编程方法,在编程过程中还需对实际零件的材质、形状和用途等特征加以分析,制定最佳方案,才能控制零件变形,提高切割的精度和效率,使数控切割机的功能得到充分的发挥,真正做到“多、快、好、省”。

  参考文献

  [1] 张全万 数控切割机影响切割质量的因素和措施 2010.12

  [2] 刘众光 数控火焰切割技术在生产过程中的应用 2009.08

  [3] 李海峰、程国栋、姜爱波 等离子切割机床自动编程系统开发2010.01

  数控火焰切割件切割变形的工艺控制【2】

  【摘 要】钢板在进行火焰切割时,容易产生切割变形,影响切割质量,造成原材料的浪费或者机加工成本的增加。

  本文分析了我公司出口澳大利亚PN机车生产过程中几种不同形状特征的切割零件产生切割变形的原因,并提出相应的防变形措施,对提高火焰切割件的切割精度有较强的应用价值。

  【关键词】数控火焰切割;切割变形;工艺控制

  0 引言

  数控火焰切割机是一种使用数控系统控制切割系统,利用氧气加丙烷等燃烧气体对金属材料进行切割的设备。

  切割过程利用气体火焰将金属材料加热到燃点,在金属材料燃烧熔化的同时,利用高速氧气流将熔渣吹除,从而形成切口[1]。

  由于可切割厚度大、切割成本低,数控火焰切割机广泛应用于机车车辆等行业。

  但是,火焰切割的热影响区较大,所以切割变形大的问题经常存在且难以避免,探索出有效控制变形的方法,是提高火焰切割质量的重要手段。

  1 产生切割变形的理论分析

  金属板材在火焰切割时产生切割变形,主要有以下三方面的原因:(1)金属板材在轧制或开卷过程中难免存在分布不均匀的残余内应力;(2)金属板材在切割过程中,受局部高温热源的影响,沿切割方向急剧膨胀,而周围母材金属又会限制这种膨胀,从而在切口边缘产生不可抵消的应力,当应力超过金属的屈服强度时,就产生压缩塑性变形;(3)在冷却过程中,金属板材沿切割方向产生一定的收缩变形,同时受周围母材金属的限制,材料内部会产生一定的拉应力。

  由于这种不均匀的加热和冷却,材料内部的应力不可能平衡和完全消除,所以在材料内部应力的作用下,被切割的零件会发生不同程度热变形,表现为零件形状扭曲和尺寸偏差。

  影响切割变形的因素主要有切割速度、割嘴的型号及其高度、切割程序等。

  根据板材厚度选择合适的切割速度和割嘴型号,控制好割嘴与板材之间的距离,能有效控制热输入量,减少切割变形。

  切割程序的合理与否,直接影响着切割质量。

  2 切割变形分析及控制

  从出口澳大利亚PN机车制造过程中几种零件的切割变形实际出发,分析这几种不同形状特征的零件产生切割变形的原因,优化切割工艺,达到有效控制切割变形的目的。

  2.1 单一规则零件的切割

  以PN机车构架上某零件的切割为例,该零件板厚为10mm,其特点是外形比较规则,可采用多只割嘴同时切割,同时零件的长宽比比较大。

  图1中1-A模型所示为三只割嘴同时切割该零件的常规程序,箭头方向为割嘴的运行方向,虚线为切割空程。

  每只割嘴切割完A的所有孔之后从a点引入切割A的外形,然后切割B的所有孔,再从b点引入切割B的外形。

  实践证明,按该程序切割出的零件,大部分会有不同程度的变形,表现在零件上是实际的孔中心线的一端偏离理论位置,最大偏离量达4mm(图2)。

  分析变形的原因,主要是因为零件长宽比比较大,长边的热应力不均衡引起变形。

  图1中,从a点起沿边1切割A时,钢板处于静止状态,钢板框架上边1和边2上的热应力基本是平衡的,零件基本不产生变形。

  但沿边3切割B时,由于边2离边3很近,所以切割边3的过程也是加热边2的过程,这时边2和边1的所受的热应力就不平衡了,所有边1上的应力之和使所有的边1同时收缩,从而使钢板框架向右偏移,导致割嘴割至下端时,之前割好的孔已随框架发生位移,从而出现图3所示的偏差。

  基于以上分析,改用图1中1-B所示切割模型,该模型将A和B看作整体,先切割所有内孔,然后依次按照1-7的顺序依次切割各边,其中边4为共用边。

  这样在切割完B时,边2与边4上应力相平衡,切割A时,边4与边6上的应力也基本平衡,钢板框架不会偏移,从而能保证所有孔的位置的准确度。

  图1 单一规则零件切割模型

  图2 零件变形示意图

  细长直条是一种特殊的长宽比比较大的规则零件,用常规方法切割时常常出现旁弯现象,为此可采取以下切割技巧:多割嘴同时切割,先切割稍大于零件长度的直线条,待钢板冷却后,再沿宽度方向切割所需要的长度。

  在各割嘴火焰强度基本一致的情况下,零件长度方向的两边是同时受热的,因此不会出现旁弯。

  2.2 单一异形零件的切割

  以PN机车车架上某零件的切割为例,该零件厚度为6mm,其特点是外形不规则且尺寸较大。

  切割这类零件时,为提高板材利用率,常采用套料的方式。

  图3中3-A为常规的切割程序模型,每只割嘴先从a点引入切割A,再从b点引入切割B。

  实践结果表明,有近50%的零件会产生旁弯变形,而且由于该零件板料较薄,所以最大变形量可达5-7mm。

  分析其变形原因:切割A时,后切割的边2轮廓长度大于先切割的边1的长度,所以边2上的收缩应力超过了边1上应力的作用,同时因为边2轮廓是凹边,所以钢板的凸边对边2的收缩有一定的阻碍作用,在合应力的作用下,零件变形较小且钢板框架基本没有位移;切割B时,先切割的边3产生的应力比很大,后切割的边4上的应力,以及钢板凸边对边3的阻碍作用,只能抵消很小一部分边3上的应力,所以零件变形比较大。

  基于以上分析,改用图3中3-B所示切割模型,A的切割程序不变,切割B时,从b点引入,逆时针切割,这样就保证了作用在B上的合应力最小,从而最大限度地控制变形。

  无论是规则零件还是异形零件,如果零件较长且尺寸较大时,采用间断切割法,是一种有效控制切割变形的方法。

  间断切割法是在零件的周边上设置一些暂时不切割的点,用以连接切割零件与钢板,防止零件变形,等钢板冷却后再断开这些点。

  切割变形不仅与切割零件的形状有关外,还与钢板的厚度、切割零件在钢板上的位置、以及切割零件和钢板的相对大(下转第24页)(上接第62页)小有关。

  一般来讲,钢板越薄,切割变形越大;切割零件离钢板中心越近,变形越小;切割零件相对钢板越大,变形越大。

  图3 单一异形零件切割模型

  2.3 多零件套料切割

  当一张板上切割多种零件时,需要对整张板进行套料切割,影响切割变形的因素也变得很复杂。

  要能平衡变形应力,切割方向和切割顺序就显得尤为重要。

  2.3.1 切割方向

  合理的切割方向应该是要保证最后切割的一边与钢板的大部分分离。

  如果切割零件过早和钢板的大部分分离,那么周边的框架因为太轻而不能够抵消切割时产生的热应力,造成切割零件的变形或者板材框架的位移,从而出现尺寸超差。

  2.3.2 切割顺序

  合理的切割顺序也是控制切割变形的有效措施,经过大量探索实践,一般应该遵守“先内后外、先小后大、先圆后方”的原则[2]。

  先内后外,即先切割零件的内轮廓或者内轮廓中嵌套的零件;先小后大,即先切割小尺寸零件,产生的热量相对较小,对零件影响也小;先圆后方,即先切割圆形孔或者圆形零件,使产生的热量辐射向外传递,钢板内部的应力相对比较平衡。

  2.3.3 应用SigmaNEST套料软件

  SigmaNEST软件是一款融合了先进自动套料技术、加工轨迹优化技术和自动化管理技术的自动套料软件。

  在控制切割热变形方面,该软件有留割、搭桥、工艺筋、最小热量法等几种方法。

  留割是在大尺寸零件的边上留几段15-30mm的桥不切割,使之与母板相连,以牵制零件收缩变形;搭桥是在套料完成后,在零件之间增加一定宽度的桥,将相邻零件看作一个整体切割,达到相互牵制、降低变形的目的;工艺筋是在零件内部的大开孔上预留一定宽度的工艺拉筋,用于减小零件内孔的收缩;最小热量法是SigmaNEST软件中,按照最小热变形量设定的切割路径,实际编程中,也可以根据套料情况更改切割路径,降低变形量。

  3 结语

  数控火焰切割时,采用共边、留割、搭桥、留工艺筋等技巧,从切割方向、切割顺序等方面着手,编写合理的切割程序,能有效减少切割零件的热变形,提高切割质量,从而降低生产成本。

  【参考文献】

  [1]任秀联,等.钢板数控切割热变形分析[J].煤矿机械,1999,5.

  [2]吴新哲,等.提高数控火焰切割质量的途径[J].机械管理开发,2011,2.

【数控切割编程工艺分析与技巧论文】相关文章:

数控编程技巧论文10-09

数控编程技巧10-05

数控切割机生产工艺改进及应用论文10-11

线切割加工工艺论文10-08

数控车削编程工艺10-05

数控编程的工艺处理10-05

数控编程论文10-08

数控加工工艺设计及步骤分析论文10-11

数控加工工艺设计原则分析论文03-25