数学毕业论文

高等代数在抽象代数中的应用

时间:2020-12-01 11:04:52 数学毕业论文 我要投稿

高等代数在抽象代数中的应用

  高等代数为抽象代数教学提供了很多模型和例子,本文从变换、等价关系、群、环、域、零因子和环上的运算规律等方面具体阐述如何在抽象代数教学中应用高等代数知识.

  摘 要: 高等代数是数学专业一门重要的基础课程,为学生学习抽象代数提供了必要的基础[1-4].抽象代数是数学专业的必修课程,是对高等代数中出现的数域、多项式等概念进一步抽象概括,是高等代数的继续和高度抽象化[5-8].因此,高等代数为抽象代数提供了很多具体的模型.

  关键词: 抽象代数;高等代数;数学专业

  高等代数和抽象代数联系紧密,但鲜有学生能领悟到它们之间的关系.学生普遍认为,高等代数比较容易接受和理解,抽象代数难以理解[9-13].作为一名教师,要利用学生熟知的高等代数知识引入定义或设为例子,使学生接受“抽象代数知识来源于熟悉的模型”这一观念.本文将从以下知识点入手,探讨如何在抽象代数教学中应用高等代数知识.

  1 “变换”概念的巩固

  一个集合A到A的映射称为A上的一个变换.教材[8]首先给出变换的定义,随之给出3个简单例子,学生基本上能掌握这个概念.但是教材[8]中没有适合学生做的课后习题,为了巩固学生所学的知识,可布置这样一道课后习题:高等代数书[4]中也有“变换”和“线性变换”这两个概念,请同学们分析[4]中的变换和这里的变换有什么关系.到下次上课前,先帮助学生温习变换的概念,再检查其课后作业,最后总结:高等代数中所提到的变换是某个线性空间到自身的映射,线性变换是线性空间上的变换并保线性性,而抽象代数中的变换是指任何集合到自身的映射.

  2 “等价关系”概念的引入

  等价关系是集合A上的一个关系,并满足自反性,对称性和传递性.在教材[8]中,作者先给出关系的概念和一个关系(不是等价关系)的例子,再直接给出等价关系的概念.如果引入不当,学生比较难以接受等价关系这一概念.事实上,等价关系的例子在高等代数书中很多,可信手拈来.因此,可以提前布置学生去复习高等代数中的矩阵“合同”和“相似”等概念,看这些概念具有什么共性.在讲述“等价关系”之前,先给出实数集R上的n×n阶矩阵集合Mn(R),并分别给出该集合上的“合同”和“相似”等关系,引导学生发现它们不仅是Mn(R)上的关系,并且都具有自反性、对称性和传递性,然后自然地引出“等价关系”的概念.学生恍然大悟:原来等价关系并不陌生,在高等代数中已经接触过.如果要进一步巩固该内容,还可以引导学生分析Mn(R)上的矩阵秩相同关系,整数集Z上的模4同余关系等,让学生自己发现来自于高等代数的某些例子也是等价关系.

  3 群、环和域概念的处理

  在教材[8]中,作者给出群的第一定义和第二定义,并证明了这两个定义的等价性.课堂上先给出第一定义,并引导学生理解Ζ关于普通加法,非零整数集合关于普通乘法按照第一定义都是群,接着由第一定义推导出第二定义,由第二定义又推导出第三定义:一个非空集合G,对于其上的一个运算满足封闭性,满足结合律,存在一个单位元,每个元素都有逆元,则G关于该运算是群,由第三定义推导出第一定义,这样即证明了三个定义的等价性,并将重点放在第三定义.有了第三定义后,提问:Mn(R)关于矩阵加法是群吗?Mn(R)中的可逆矩阵集合关于矩阵乘法是群吗?同时,让学生翻阅教材[4]中关于矩阵加法和矩阵乘法的定义及性质,学生会发现:Mn(R)关于矩阵加法满足封闭性与结合律,零矩阵是单位元,每个矩阵的逆元是其负矩阵,因此Mn(R)关于矩阵加法是群;Mn(R)中的`可逆矩阵集合关于矩阵乘法也构成群.进一步,引导学生发现:矩阵加法满足交换律,因此Mn(R)关于矩阵加法是交换群;而矩阵乘法不满足交换律,因此Mn(R)中的可逆矩阵集合关于矩阵乘法不是交换群.接着,再告诉学生:高等代数中还有很多群的例子,请同学们把这些例子全部找出来.学生通过总结,找出了一元实系数多项式集合R[x]关于多项式加法是群、实数集R上的n维行(列)向量的全体关于向量加法构成群等.

  可类似地处理环和域概念的讲解与巩固,这样不仅促使学生去复习高等代数知识,让学生深刻领悟到:群、环和域等概念是对高等代数中出现的数域、多项式、矩阵和线性空间等概念的进一步抽象概括,也让学生逐渐意识到抽象代数并不是那么抽象,抽象代数的模型是现实中有例可循的,更增强了学生的学习兴趣和学习积极性.

  4 零因子

  零因子对学生来说是个全新的概念,教材[8]中先给出了整数模n的剩余类环Zn的例子:当n是合数时,存在两个不是零元的元素相乘却是零元,接着给出了零因子的概念:在一个环里,a≠0, b≠0,但ab=0,则称a是这个环的一个左零因子,b是一个右零因子,若一个元素既是左零因子又是右零因子,则称其为零因子,最后还举了一个比较抽象的例子和一个比较泛的矩阵环的例子.虽然Zn在抽象代数中经常出现,但是毕竟该环是通过模n取余运算构成的环,该运算跟学生以前学过的运算有很大的区别,对学生来说仍具有一定的抽象性,而书上列举的矩阵环的例子只说该环有零因子,并没有列举具体的零因子.如果完全按教材的编排按部就班地讲解,学生很容易忘记.这时,不妨引导学生回想:Mn(R)中两个非零的矩阵相乘会是零矩阵吗?大部分学生知道这是可能发生的,但是还有少数学生可能忘记相应的高等代数知识了,这时给出如下例子.

  通过该例告诉学生A是环S的左零因子而B是环S的右零因子,这样学生基本上知道零因子这个概念了.接着,再提问:“一个环上的左(右)零因子是零元吗?一个环内的左零因子一定是右零因子吗?一个环内的右零因子一定是左零因子吗?”可继续利用例1,让学生在环S里面找个矩阵C使得BC=02×2,学生通过简单的计算发现C必须为零矩阵,所以B是环S的右零因子但不是环S的左零因子,也就是说一个环内的右零因子并不一定是左零因子,反之,一个环内的左零因子并不一定是右零因子,再进一步强调一个环上的左(右)零因子一定不是零元.   通过例1的讲解,学生对零因子已经不陌生了,这时采用启发式教学,引导学生去解答:一个环里面哪些元可能是零因子,哪些元一定不是零因子.先给出如下例子.