学习技巧

高中数学学习解题技巧

时间:2022-10-05 18:37:01 学习技巧 我要投稿
  • 相关推荐

高中数学学习解题技巧

  数学的学习与语文、英语不太一样,死记硬背公式、方法对学习成绩的提高没有一点帮助,以下是小编为大家整理的高中数学解题技巧,一起了;爱看看如何学习数学吧!

高中数学学习解题技巧

  高中数学解题技巧【1】

  对于数学解题思维过程,G.波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。

  这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

  第一阶段:理解问题是解题思维活动的开始。

  第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

  第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

  第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

  数学解题的技巧

  为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

  一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

  基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

  一、熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

  一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。

  从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。

  因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。

  常用的途径有:

  (一)、充分联想回忆基本知识和题型:

  按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

  (二)、全方位、多角度分析题意:

  对于同一道数学题,常常可以不同的侧面、不同的角度去认识。

  因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

  (三)恰当构造辅助元素:

  数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。

  因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

  数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。

  二、简单化策略

  所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

  简单化是熟悉化的补充和发挥。

  一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

  因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

  解题中,实施简单化策略的途径是多方面的,常用的有:寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

  1、寻求中间环节,挖掘隐含条件:

  在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。

  因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

  2、分类考察讨论:

  在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。

  对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

  3、简单化已知条件:

  有些数学题,条件比较抽象、复杂,不太容易入手。

  这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。

  这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

  4、恰当分解结论:

  有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

  三、直观化策略:

  所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

  (一)、图表直观:

  有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

  对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

  (二)、图形直观:

  有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。

  这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

  四、特殊化策略

  所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

  五、一般化策略

  所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

  六、整体化策略

  所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

  七、间接化策略

  所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

  高中数学解题方法及步骤【2】

  一、配方法

  配方法是对数学式子进行一种定向变形(配成\\\"完全平方\\\")的技巧,通过配方找到已知和未知的联系,从而化繁为简。

  何时配方,需要我们适当预测,并且合理运用\\\"裂项\\\"与\\\"添项\\\"、\\\"配\\\"与\\\"凑\\\"的技巧,从而完成配方。

  有时也将其称为\\\"凑配法\\\"。

  最常见的配方是进行恒等变形,使数学式子出现完全平方。

  它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

  二、换元法

  解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

  换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

  换元法又称辅助元素法、变量代换法。

  通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

  或者变为熟悉的形式,把复杂的计算和推证简化。

  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

  三、待定系数法

  要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。

  待定系数法解题的关键是依据已知,正确列出等式或方程。

  使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。

  例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。

  使用待定系数法,它解题的基本步骤是:

  第一步,确定所求问题含有待定系数的解析式;

  第二步,根据恒等的条件,列出一组含待定系数的方程;

  第三步,解方程组或者消去待定系数,从而使问题得到解决。

  如何列出一组含待定系数的方程,主要从以下几方面着手分析:

  ①利用对应系数相等列方程;

  ②由恒等的概念用数值代入法列方程;

  ③利用定义本身的属性列方程;

  ④利用几何条件列方程。

  比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。

  四、定义法

  所谓定义法,就是直接用数学定义解题。

  数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。

  定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。

  定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。

  简单地说,定义是基本概念对数学实体的高度抽象。

  用定义法解题,是最直接的方法,本讲让我们回到定义中去。

  五、数学归纳法

  归纳是一种有特殊事例导出一般原理的思维方法。

  归纳推理分完全归纳推理与不完全归纳推理两种。

  不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

  完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

  数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。

  它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

  这两个步骤密切相关,缺一不可,完成了这两步,就可以断定\\\"对任何自然数(或n≥n且n∈N)结论都正确\\\"。

  由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

  运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

  运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

  六、参数法

  参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。

  直线与二次曲线的参数方程都是用参数法解题的例证。

  换元法也是引入参数的典型例子。

  辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。

  参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。

  参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。

  运用参数法解题已经比较普遍。

  参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。

  七、反证法

  与前面所讲的方法不同,反证法是属于\\\"间接证明法\\\"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。

  法国数学家阿达玛(Hadamard)对反证法的实质作过概括:\\\"若肯定定理的假设而否定其结论,就会导致矛盾\\\"。

  具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。

  反证法所依据的是逻辑思维规律中的\\\"矛盾律\\\"和\\\"排中律\\\"。

  在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的\\\"矛盾律\\\";两个互相矛盾的判断不能同时都假,简单地说\\\"A或者非A\\\",这就是逻辑思维中的\\\"排中律\\\"。

  反证法在其证明过程中,得到矛盾的判断,根据\\\"矛盾律\\\",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以\\\"否定的结论\\\"必为假。

  再根据\\\"排中律\\\",结论与\\\"否定的结论\\\"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。

  所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。

  反证法的证题模式可以简要的概括我为\\\"否定→推理→否定\\\"。

  即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是\\\"否定之否定\\\"。

  应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。

  实施的具体步骤是:

  第一步,反设:作出与求证结论相反的假设;

  第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;

  第三步,结论:说明反设不成立,从而肯定原命题成立。

  在应用反证法证题时,一定要用到\\\"反设\\\"进行推理,否则就不是反证法。

  用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫\\\"归谬法\\\";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫\\\"穷举法\\\"。

  在数学解题中经常使用反证法,牛顿曾经说过:\\\"反证法是数学家最精当的武器之一\\\"。

  一般来讲,反证法常用来证明的题型有:命题的结论以\\\"否定形式\\\"、\\\"至少\\\"或\\\"至多\\\"、\\\"唯一\\\"、\\\"无限\\\"形式出现的命题;或者否定结论更明显。

  具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。

【高中数学学习解题技巧】相关文章:

高中数学三角函数解题技巧分析论文10-11

有关阅读学习方法的与解题技巧10-08

高中政治解题技巧与学习方法10-12

高中数学学习的方法10-08

高中数学的学习方法02-04

学习高中数学方法10-05

高中数学学习要点10-05

学习高中数学的几点小技巧10-11

高中数学学习方法10-13

关于解析高中数学学习的技巧10-10