传统文化作文

中国传统文化作文150字

时间:2025-08-26 10:19:50 传统文化作文 我要投稿
  • 相关推荐

中国传统文化作文150字15篇【精品】

  在学习、工作、生活中,大家都尝试过写作文吧,借助作文人们可以实现文化交流的目的。你知道作文怎样才能写的好吗?以下是小编为大家收集的中国传统文化作文150字,希望对大家有所帮助。

中国传统文化作文150字15篇【精品】

中国传统文化作文150字1

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的.顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

中国传统文化作文150字2

  1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

  2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

  4.圆是定点的距离等于定长的点的集合。

  5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的点的集合。

  6.不在同一直线上的三点确定一个圆。

  7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  推论1:

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的'弧相等。

  8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  10.经过切点且垂直于切线的直线必经过圆心。

  11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  12.切线的性质定理圆的切线垂直于经过切点的半径。

  13.经过圆心且垂直于切线的直线必经过切点

  14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  15.圆的外切四边形的两组对边的和相等外角等于内对角。

  16.如果两个圆相切,那么切点一定在连心线上。

  17.

  ①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交d>R-r)

  ④两圆内切d=R-r(R>r)

  ⑤两圆内含d=r)

  18.定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

  19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。

  21.内公切线长= d-(R-r)外公切线长= d-(R+r)。

  22.定理一条弧所对的圆周角等于它所对的圆心角的一半。

  23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

中国传统文化作文150字3

  1、正数和负数的有关概念

  (1)正数:

  比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的'绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。

  (3)一个数同零相加,仍得这个数。

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:

  减去一个数,等于加上这个数的相反数。

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:

  乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

  初中数学知识点总结2平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成。

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成。

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

中国传统文化作文150字4

  在初中数学课堂教学中,小结一般作为总结本课,开启下一课的钥匙。但是在具体执行过程中,受到时间、学生心态、教师课堂设计水平等因素的限制,初中数学课堂小结在运用的过程中呈现出多种问题。究其原因是多方面的,而其最主要的原因则来源于教师对学生心理的把握力度不够。心理学专家在当代少年儿童的大脑结构分析基础上所做出的研究表明,在初中阶段的学生对课程的关注度主要集中在前15分钟,个别注意力比较好的学生能坚持到15~25分钟,随着时间的推移,从25分钟到45分钟之间学生的记忆力和注意力则出现了逐渐下滑的趋势。由此可见,教师在做初中数学课程设计时,仅仅按照传统习惯将课堂小结作为课末总结的方式并不科学,对学生的课堂学习和课下探索延伸起不到推动作用。

  由此,在新的知识环节讲解和学习的过程中,对课堂小结的设计,教师应该通过巧妙的规划,实现温故知新,而这又是对本堂课程的总结和反思的过程,具有极强的逻辑性和渐进性,环环相扣,同时要为学生的思考和课下探索的延伸留出独立的空间。因此,按照具体的操作,本文以浙教版初中数学“探索多边形的内角和”的课堂学习为例,对课堂小结的运用从以下两个方面进行阐述。

  一、拨迷梳“理”,温故知新

  七年级“探索多边形的内角和”一课的教学重点是让学生了解什么是多边形、什么是内角、如何求内角和、如何在现实生活中利用此种计算方法。新课标要求,学生作为教学主体,对课程重点内容的了解和领悟主要是以他们自身的动手操作为主,这也是教师在教案设计时的主要切入点之一。在明确本堂课的教学重点之后,教师需要对以往学习过的知识点进行梳理,并找出与本堂课有关联性的知识点,在课程初始时作为引导,通过对以往知识点的回顾,如三角形、相交线等已学知识点引出本堂课的重点。而后面即将学习的课程,如“多姿多彩几何图形”等的'相应测试,也可以作为学生课堂及课后的延伸知识点,在教师的课程讲解过程中予以贯穿。当然,在课程设计初期,教师要尤为注意的是,应根据本堂课知识点的重点排序,由主到辅、由简入深地安排好具有节奏感的讲解内容及小结,而作为延伸思考的知识点在每个小结部分可以按照其相关性和重要性进行穿插安排。

  二、动手操作,注重反思

  “探索多边形的内角和”中,多边形的概念是本课各个难点展开的基础,按照多边形的概念,教师可以让学生用线、卡纸、铁丝等工具自行制作凹多边形或凸多变形,以体验多边形的曲线美。引导学生尝试以拉伸和缩小的方式构架出凹多边形和凸多变形后,教师可以让学生按照体验来描述二者的区别和相同点,并以此作为小结。当学生做完归纳后,根据本课“多边形的内角和主要以凸多边形为主”的教学目标要求,教师可提问:“同学们目前已经了解了二者的区别,本堂课要讲解的‘多边形内角和’主要以凸多边形为基础,但是为什么我们不以凹多边形为基础呢?请同学们仔细想想原因。”教师的这种讲解模式既可以为下面对“内角和”的重点讲解作铺垫,又可以让学生深入思考之前对凹凸多边形的描述是否恰当,是否符合多边形的数学性规律。

  在此种引导方法下,学生会按照下一个知识点的内容来反思之前的小结是否具有全面性。在反复的思考和对比过程中,学生的逻辑思维可以得到充分的训练。这对培养学生的数学思维,以及对知识点的重复性推敲和反思能力的提升具有促进作用。一旦学生在思考和探讨的过程中,摸索到数学本身的规律,并从复杂多样的数学知识点中找到其原本的架构,自然会在头脑中建立起一个符合自身记忆和领悟需要的数学知识体系。

  三、大道从简,循环渐进

  大道从简,按照初中数学的知识点架构来看,每堂课的每个知识点都可以在被重点提炼之后作为节点来布置课堂小结。以数学的逻辑思维传承性为基础,课堂上的下一个知识点就可以作为反思和推敲上一个小结的试金石,如此循环往复后,课末的最终知识点总结则对本课所有知识点小结进行有效的补充和完善,进而延伸出下堂课以及与本堂课重点内容相关的其他数学知识点的探索和思考。

  当然,这种教学方法也同样可以运用到其他学科的教学中。借助教师的渐进式诱导,学生会自主加入到课堂探索中,通过由简到难、由浅入深的逐层递进式反思和讨论提升在课堂中的兴趣度和专注度。

中国传统文化作文150字5

  第一章实数

  一、重要概念

  1、数的分类及概念

  数系表:

  说明:“分类”的原则:1)相称(不重、不漏)

  2)有标准

  2、非负数:正实数与零的统称。(表为:x≥0)

  常见的非负数有:

  性质:若干个非负数的和为0,则每个非负担数均为0。

  3、倒数:①定义及表示法

  ②性质:A。a≠1/a(a≠±1);B。1/a中,a≠0;C。01;a>1时,1/a<1;D。积为1。

  4、相反数:①定义及表示法

  ②性质:A。a≠0时,a≠—a;B。a与—a在数轴上的位置;C。和为0,商为—1。

  5、数轴:①定义(“三要素”)

  ②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。

  6、奇数、偶数、质数、合数(正整数—自然数)

  定义及表示:

  奇数:2n—1

  偶数:2n(n为自然数)

  7、绝对值:①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

  二、实数的运算

  1、运算法则(加、减、乘、除、乘方、开方)

  2、运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3、运算顺序:A。高级运算到低级运算;B。(同级运算)从“左”

  到“右”(如5÷ ×5);C。(有括号时)由“小”到“中”到“大”。

  三、应用举例(略)

  附:典型例题

  1、已知:a、b、x在数轴上的位置如下图,求证:│x—a│+│x—b│

  =b—a。

  2、已知:a—b=—2且ab<0,(a≠0,b≠0),判断a、b的符号。

  初三数学知识点第二章代数式

  重点代数式的有关概念及性质,代数式的运算

  ☆内容提要☆

  一、重要概念

  分类:

  1、代数式与有理式

  用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独

  的一个数或字母也是代数式。

  整式和分式统称为有理式。

  2、整式和分式

  含有加、减、乘、除、乘方运算的代数式叫做有理式。

  没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

  有除法运算并且除式中含有字母的有理式叫做分式。

  3、单项式与多项式

  没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)

  几个单项式的和,叫做多项式。

  说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x,=│x│等。

  4、系数与指数

  区别与联系:①从位置上看;②从表示的意义上看

  5、同类项及其合并

  条件:①字母相同;②相同字母的指数相同

  合并依据:乘法分配律

  6、根式

  表示方根的.代数式叫做根式。

  含有关于字母开方运算的代数式叫做无理式。

  注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

  7、算术平方根

  ⑴正数a的正的平方根([a≥0—与“平方根”的区别]);

  ⑵算术平方根与绝对值

  ①联系:都是非负数,=│a│

  ②区别:│a│中,a为一切实数;中,a为非负数。

  8、同类二次根式、最简二次根式、分母有理化

  化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

  满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

  把分母中的根号划去叫做分母有理化。

中国传统文化作文150字6

  一、数与代数

  A、数与式:

  1、有理数有理数:整数→正整数/0/负整数分数→正分数/负分数

  数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

  在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:加法:同号相加,取相同的符号,把绝对值相加。异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘得0。乘积为1的两个有理数互为倒数。

  除法:除以一个数等于乘以一个数的倒数。0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数无理数:无限不循环小数叫无理数

  平方根:如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。如果一个数X的平方等于A,那么这个数X就叫做A的平方根。一个正数有2个平方根/0的平方根为0/负数没有平方根。求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:如果一个数X的立方等于A,那么这个数X就叫做A的立方根。正数的立方根是正数、0的立方根是0、负数的立方根是负数。求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:实数分有理数和无理数。在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

  4、整式与分式

  整式:数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。一个单项式中,所有字母的指数和叫做这个单项式的次数。一个多项式中,次数最高的项的次数叫做这个多项式的次数。

  整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

  幂的运算:AM+AN=A(M+N)

  (AM)N=AMN

  (A/B)N=AN/BN除法一样。

  整式的乘法:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

  公式两条:平方差公式/完全平方公式

  整式的除法:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

  方法:提公因式法、运用公式法、分组分解法、十字相乘法。

  分式:整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

  分式的运算:

  乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

  除法:除以一个分式等于乘以这个分式的倒数。

  加减法:同分母分式相加减,分母不变,把分子相加减。异分母的分式先通分,化为同分母的分式,再加减。

  分式方程:分母中含有未知数的方程叫分式方程。使方程的分母为0的解称为原方程的增根。

  初中数学知识点总结:常用的数学公式

  初中数学知识点总结:常用的数学公式

  乘法与因式分解a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b=-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a

  -b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/aX1xX2=c/a注:韦达定理

  判别式

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac0注:方程有两个不等的.实根

  b2-4ac0注:方程没有实根,有共轭复数根

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R

  注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2-2accosB

  注:角B是边a和边c的夹角

  初中数学知识点总汇

  初中数学知识点总汇

  B:方程与不等式

  1:方程与方程组

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:

  去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2:不等式与不等式组

  不等式:

  ①用符号=号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  3:函数

  变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

  ②当B=0时,称Y是X的正比例函数。

  一次函数的图象:

  ①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

  ②正比例函数Y=KX的图象是经过原点的一条直线。

  ③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

  ④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

  二、空间与图形

  A:图形的认识:

  1:点,线,面

  点,线,面:

  ①图形是由点,线,面构成的。

  ②面与面相交得线,线与线相交得点。

  ③点动成线,线动成面,面动成体。

  展开与折叠:

  ①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

  ②N棱柱就是底面图形有N条边的棱柱。

  截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

  3视图:主视图,左视图,俯视图。

  多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

  弧,扇形:

  ①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

  ②圆可以分割成若干个扇形。

  2:角

  线:

  ①线段有两个端点。

  ②将线段向一个方向无限延长就形成了射线。射线只有一个端点。

  ③将线段的两端无限延长就形成了直线。直线没有端点。

  ④经过两点有且只有一条直线。

  比较长短:

  ①两点之间的所有连线中,线段最短。

  ②两点之间线段的长度,叫做这两点之间的距离。

  角的度量与表示:

  ①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比较:

  ①角也可以看成是由一条射线绕着他的端点旋转而成的。

  ②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。

  ③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

  平行:

  ①同一平面内,不相交的两条直线叫做平行线。

  ②经过直线外一点,有且只有一条直线与这条直线平行。

  ③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

  垂直:

  ①如果两条直线相交成直角,那么这两条直线互相垂直。

  ②互相垂直的两条直线的交点叫做垂足。

  ③平面内,过一点有且只有一条直线与已知直线垂直。

  3:相交线与平行线

  角:

  ①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。

  ②同角或等角的余角/补角相等。

  ③对顶角相等。

  ④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。

中国传统文化作文150字7

  第一章:勾股定理

  1.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么两条直角边长的平方和等于斜边长的平方。

  4.如果直角三角形的两条直角边长分别是a和b,斜边长为c,那么a、b、c三者之间的关系是a的`平方加上b的平方等于c的平方。

  第二章:四边形

  1.平行四边形:两组对边分别平行的四边形叫做平行四边形。

  2.菱形:有一组邻边相等的平行四边形叫做菱形。

  3.矩形:有一个角是直角的平行四边形叫做矩形。

  4.正方形:有一组邻边相等的矩形叫做正方形。

  5.平行四边形的性质:对边平行且相等;对角相等,且互补;对角线互相平分。

  6.菱形的性质:四边相等;对角线互相垂直,且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半。

  7.矩形的性质:矩形的四个角都是直角;矩形的对角线相等。

  8.正方形的性质:四个角都是直角,四条边都相等;对角线相等,且互相垂直平分,每条对角线平分一组对角;正方形被两条对角线分成四个全等的直角三角形;正方形是特殊的长方形,所以正方形具有矩形的一切性质。

  第三章:一次函数

  1.一次函数:如果所给函数表达式是正比例函数,那么它经过原点(0,0);如果所给函数表达式是一次函数(斜截式),那么它经过原点(0,0)。

  2.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  3.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  4.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  5.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  6.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  7.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  8.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

  9.正比例函数:如果y=kx(k是常数,且k≠0),那么y叫做x的正比例函数。

  10.一次函数:如果正比例函数y=kx(k是常数,且k≠0)的图像经过第一、二、三象限,那么一次函数y=kx+b(k,b是常数,k≠0)的图像也经过第一、二、三象限。

中国传统文化作文150字8

  一、数与代数

  1.有理数

  有理数:包括正整数、0和负整数。

  数轴:包括原点、正方向和单位长度。

  相反数:只有符号不同的两个数叫做互为相反数。

  绝对值:正数的绝对值是其本身,负数的绝对值是它的`相反数,0的绝对值是0。

  2.整式与分式

  整式:包括单项式和多项式。

  分式:包括一般形式和特殊形式。

  代数式:包括单字母、单项式和多项式。

  二、空间与图形

  1.点、线、面

  点:没有大小,没有长度。

  线:没有宽度,只有长度。

  面:有长度和宽度,没有高度。

  2.基本图形

  直线:包括直线、射线、线段。

  角:包括平角、周角和一般的角。

  三角形:包括等边三角形、等腰三角形和一般三角形。

  四边形:包括矩形、正方形、梯形和平行四边形。

  圆:包括圆的性质和圆的定理。

  三、统计与概率

  1.统计

  统计图:包括扇形统计图、折线统计图和条形统计图。

  统计表:包括简单统计表和复合统计表。

  数据的收集与整理:包括抽样调查、全面调查和自主调查。

  2.概率

  随机事件:包括必然事件、不可能事件和随机事件。

  概率:包括计算事件发生的概率和随机事件的概率。

  以上是初中数学知识点总结的主要内容,这些知识点是数学学习的基础,需要学生熟练掌握和应用。

中国传统文化作文150字9

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的`一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  32、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  35、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

中国传统文化作文150字10

  古典概率与几何概率

  1、基本事件特点:任何两个基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。

  2、古典概率:具有下列两个特征的随机试验的数学模型称为古典概型:

  (1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。

  P(A)A中所含样本点的个数nA中所含样本点的'个数n.

  3、几何概率:如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为几何概率。几何概率具有无限性和等可能性。

  4、古典概率和几何概率的基本事件都是等可能的;但古典概率基本事件的个数是有限的,几何概率的是无限个的。

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability), 记作P(A)= p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同。

中国传统文化作文150字11

  1.平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  2.完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  3.一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  4. 一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

  5.一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  6.分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

  7.分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

  8.最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

  9.特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

  10.象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

  11.平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

  12.对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号;原点对称记,横纵坐标变符号。

  13.自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

  14.函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

  15.巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。

  初三数学上册期末知识点归纳

  单项式与多项式

  仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

  单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

  当一个单项式的系数是1或-1时,“1”通常省略不写。

  一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

  1、多项式

  有有限个单项式的代数和组成的式子,叫做多项式。

  多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

  单项式可以看作是多项式的特例

  把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

  在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

  2、多项式的值

  任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

  3、多项式的恒等

  对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。

  性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。

  性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。

  4、一元多项式的根

  一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。

  多项式的加、减法,乘法

  1、多项式的加、减法

  2、多项式的乘法

  单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

  3、多项式的乘法

  多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  两个数的和与这两个数的差的积等于这两个数的平方差。

  关于数学常见误区有哪些

  1、被动学习

  许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

  2、学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、不重视基础

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的'“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4、进一步学习条件不具备

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

  如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

  如何整理数学学科课堂笔记

  一、内容提纲。老师讲课大多有提纲,并且讲课时老师会将一堂课的线索脉络、重点难点等,简明清晰地呈现在黑板上。同时,教师会使之富有条理性和直观性。记下这些内容提纲,便于课后复习回顾,整体把握知识框架,对所学知识做到胸有成竹、清晰完整。

  二、疑难问题。将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。教师在组织课堂教学时,受到时空的限制,不可能做到顾及每一位同学。相应的,一些问题对部分学生来说,是属于疑难问题,由于课堂上来不及思考成熟,记下疑难问题,可在课后继续加以思考和探究,加以理解和掌握,不致出现知识的断层、方法的缺陷。

  三、思路方法。对老师在课堂上介绍的解题方法和分析思路也应及时记下,课后加以消化,若有疑惑,先作独立分析,因为有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后及时与老师商榷和探讨。勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。在这基础上,若能主动钻研,另辟蹊径,则更难能可贵。

  四、归纳总结。注意记下老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的联系,掌握基本概念、公式、定理,寻找规律,融会贯通课堂内容都很有作用。同时,很多有经验的老师在课后小结时,一方面是承上归纳所学内容,另一方面又是启下布置预习任务或点明后面所要学的内容,做好笔记可以把握学习的主动权,提前作准备,做到目标任务明确。

  五、错误反思。学习过程中不可避免地会犯这样或那样的错误,记下自己所犯的错误,并用红笔醒目地加以标注,以警示自己,同时也应注明错误成因,正确思路及方法,在反思中成熟,在反思中提高。

  数学常用解题技巧有哪些

  第一,应坚持由易到难的做题顺序。近年来高考数学试题的设置是8道选择题、6道填空题、6到大题,通常称为866结构。在实体设置的结构中有三个小高峰,选择题是由易到难,最难的题是第8题。填空题同样是这样设置的。也是第9题容易到第14题最难,大题从第15题到第20题,它们的设置也是这样的。根据这样的试题结构,应先做前面容易的,基础好一点的考生就先做前7个选择,前5个填空、前5个大题,称为是755结构。基础差的就是644,先把自己能做的、会做的拿到手。这是第一点。

  第二,审题是关键。把题给看清楚了再动笔答题,看清楚题以后问什么、已知什么、让你做什么,把这些问题搞清楚了,自己制订了一个完整的解题策略,在开始写的时候,这个时候是很快就可以完成的。

  第三,属于非智力因素导致想不起来。本来是很简单的题比如说是做到第三题、第四题的时候不是难题,但想不起来了,卡住了,这时候怎么办?虽然是简单题却不会做怎么办?应先跳过去,不是这道题不会做吗?后面还有很多的简单题呢,把后面的题做一做,不要在考场上愣神,先跳过去做其他的题,等稳定下来以后再回过头来看会顿悟,豁然开朗。

  第四,做选择题的时候应运用最好的解题方法。因为选择题和填空题都是看结果不看过程,因此在这个过程中都应不择手段,只要是能把正确的结论找到就行。考生常用的方法是直接法,从已知的开始也不看它的四个选项,从头到尾写完了之后一看答案就写上去了。另外就是特质法(音),一些出现字母、特别是不等式,这时候给它赋一个值,代进去这时候速度会比较快,正确地找出结果来。再就是数形结合法。最后实在不行了,就将四个选项代入验证,看看哪个符合就是哪个了。填空题用上述的直接法、特质法、数形结合法三种方法都适合。做大题的时候要特别注意解题步骤,规范答题可以减少失分。简单地说,规范答题就是从上一步的原因到下一步的结论,这是一个必然的过程,让谁写、谁看都是这样的。因为什么所以什么是一个必然的过程,这是规范答题。

中国传统文化作文150字12

  关键词:数学;总复习;初中;方法

  中图分类号:G633。6文献标识码:B文章编号:1672—1578(20xx)12—0217—01

  初中数学是义务教育阶段一门主要课程,它是进一步学习工作的基础。因此,进行初三数学总复习,使学生具有一定的数学素质,合格毕业,对于提高全民族素质,为培养改革人才奠定基础是十分必要的。本文将要探讨的就是搞好初三数学总复习的一些体会。

  1、明确总复习的目的

  中考是总结性的检验,考试成绩也必然会促使我们认真地总结检查自己的教学工作,改进教学方法,提高教学质量。因此,中考的需要是初三总复习的重要目的,但不是唯一的目的。在复习方面要从单纯面向升学的需要,转变为面向学生终身学习的需要。通过初三数学总复习,要使学生全面而系统地掌握初中数学的基础知识加深理解这些知识,进一步提高运用这些动知识的分析和解决问题的能力,从而大面积地扎扎实实的提高教学质量,为学生升入高一级学校打下必要的基础。

  2、在《课标》和《考试说明》的指导下开展复习工作

  "人人都能获得良好的数学教育,不同的人在数学上得到不同的发展"。这是新课程标准努力倡导的目标。也是我们总复习工作的出发点。20xx年版的《初中数学新课程标准》(以下简称《课程标准》)以及历年的《河北省文化课考试说明》(以下简称《考试说明》)中所确定的必学内容是要求所有学生都应当学习的`,一定要教好学好,降低难度、减轻学生过重的学习负担,正是为了使学生掌握那些最基本、最重要的内容,使绝大多数同学能学得好,增强信心,大面积提高教学质量。另一方面,对学有余力的同学也要创造条件,指导他们进一步学习,充分发挥他们的数学才能,做到既面向全体学生又因材施教。这一重要的教学指导思想,也是我们初三数学总复习必须遵循的方针。

  3、从学生的实际出发,有序地进行初三数学总复习

  教学是师生双方的共同活动,教师的教是为学生积极主动地学。初三总复习时间短,内容多,要想取得较好的复习效果,除教师钻研《课标》与《考试说明》,通晓教材,突出重点之外,还要调查研究、了解学生、明确难点,从学生实际出发,进行复习。否则,课的起点高了,学生接受有困难,起点低了,讲得太容易了,学生听起来乏味厌烦,使复习课不能有的放矢,对症下药、因材施教。因此,要了解学生的思想状况,复习的学习态度和方法;要了解学生对哪些知识是掌握提比较好的,哪些知识理解得不够深透,还有哪些知识是应当补缺的,哪些知识是普遍性的问题,哪些知识是个别性问题,充分估计学生的实际水平究竟如何。

  4、突出数学思想方法,狠抓"四基"的落实

  数学思想方法是数学知识的精髓,是沟通数学知识与运算能力的桥梁。教师应在平时教学中不断引导学生从数学知识中提炼数学思想,注重运用数学思想去分析问题与解决问题,并有意识、有目的地结合教材逐步渗透给学生:转化的思想、数形结合的思想、分类讨论的思想、方程的思想、函数的思想,要求学生理解待定系数法、消元法、降次法、配方法、换元法。对学习成绩好的学生,还应激发他们去总结带全局性的数学思想方法。

  20xx年版初中数学课程标准明确提出"四基",即基础知识、基本技能、基本思想和基本活动经验。要使学生复习好基础知识和掌握基本技能,首先要使学生正确理解概念,对易混的概念抓住它们之间的区别与联系,同时要抓基本运算、抓基本数学方法和思维方法。基本概念、基本运算必须反复地练习,才能达到纯熟和巩固。凡属这方面的错误,必复习一段、练习一段、检查一段。务求落实"段段清",以掌握知识的本质为标准。当然还要注意因材施教,逐步深入。

中国传统文化作文150字13

  关键词:初一数学;基础知识;教学策略

  初中数学是一个整体,相对而言,初一数学知识点很多,注重基础,初一数学是对学数学的适当深入,也为后续的学习打下良好的基础。在初一数学的教学中,注重学生基础知识的掌握是非常必要的。如今的现状是,刚入初中的学生并没有对打好数学基础有足够的重视。一些学生刚进入初中,在数学学习中感受不到压力,没有投入足够的精力,因而渐渐地就积累了很多关于基础知识的小问题,这些小问题在学生进入后续的学习中,慢慢就越来越多,形成大问题,大问题渐渐就会凸显出来,学生渐渐就会感到力不从心。下面就针对初一学生学习中的问题,具体谈谈如何打好初一数学的基础。

  一、打好初一数学基础的重要性

  进入中学,学生的科目增加,内容拓展,知识深入,数学这门学科由具体到抽象,从文字发展成了符号,从静态逐渐发展成了动态。初一数学学习是很重要的一年,能够让学生感受到初中数学与小学的不同,并能感受到数学学习带来的快乐,然而,一些学生对数学产生厌恶情绪也大都是从初中开始的,由于基础没打好对数学产生厌恶是很多学生的通病。基础知识是进行深入学习的根基,它为数学学习的深入做铺垫,然而基础知识却并没有得到初一学生应有的足够重视。初中的数学知识相对小学来说,已有了很大的深入,如果初一的基础知识没有打好,学生会渐渐感到吃力,从而跟不上教学步伐,导致产生厌学情绪。不利于学生的发展。因此,教师在教学中必须注重初一学生基础知识的培养,并使学生认识到打好基础知识的重要性。

  二、初一数学学习中常出现的问题

  1、知识点理解不透彻

  初一学生刚入初中,依然保留着小学生的一些习惯,爱玩并且厌烦课本上的基础知识点。对知识点的理解停留在一知半解的层次上。并且,学生并没有对基础知识有足够的重视,没有认识到基础知识的重要性,从而导致基础知识越来越差,产生对数学的厌烦,进入恶性循环。

  2、解答题目小错误多,无法完整地解决问题

  学生由于不重视基础,导致一些题目无法完整地进行解决,无论简单的题型还是难的题型,都是建立在基础知识点上的。学生的问题是无法把握其中的基础技巧,忽视基础知识,始终不能完整地解决问题。

  3、没有养成归纳总结的好习惯

  学生在平时的练习中会有许多解错的题型和忽视了的`知识点,然而大都都是错了就错了,并没有进行归纳总结,导致对错误的题型没有进行反思,从而一错再错。对一些基础知识点,也没有进行很好的归纳,脑海里没有一个系统的基础知识网。

  三、打好学生数学基础的策略

  1、明确教学目标,突出重点

  每一堂课的教学,都有它的重点内容,每一堂课,作为教师,首先都需要明确这堂课的教学目标,并要突出重点,让学生对这堂课所学的知识点有一个清晰的轮廓。教师可以在黑板的一角把重点内容简短地写出来,并保持一节课,引起学生的关注和重视。教师要通过不断强调和引用,使学生对重点知识点留下深刻的印象,并可以出一个引用了重点知识的题目让学生解答。例如,学习《数轴》这一节时,教师可先对重点基础知识点进行讲解,让学生了解数轴的基本定义,在脑海里留下一个概念,再让学生上讲台到黑板上按要求画下来。画完后,让学生自己做必要的讲解,比如画数轴的三要素原点、正方向、单位长度。这样,学生对数轴的基础知识点就会有一个深刻的印象。

  2、精讲例题,多做课堂练习

  针对基础知识,教师可在课堂上多设置一些例题,使学生能够把基础知识应用到题目中去解答,从而认识到基础知识的重要性。教师要精选例题,按照这节课的重点基础内容进行选题,从结构特征、思维方式等各个方面进行对题型的剖析,从而让学生在解题的基础之上掌握基础知识的关键。知识点讲得再多也是抽象空洞的,只有与题目进行结合,让学生灵活运用,才能够使学生对知识点有一个深刻的理解。课堂上需根据实际情况布置课堂练习,练习量针对知识点的难易程度可多可少,重要的是要让学生有一个思考解答的过程。教师可让学生自主进行解答,若解答不出教师则做必要的指点进行帮助,并且要鼓励学生不懂就要问。还可以让学生共同讨论一些难点问题,促进学生勤学好问的习惯培养。

  3、形象教学,变抽象为具体

  教师在实际课堂教学中,可以运用很多种教学方式,每一堂课都有其教学目标,教学需根据教学内容的变化选择适当的教学方式,形象教学是很重要并且很有效的教学方式。例如,进行几何的教学,教师可以进行具体演示,向学生展示几何模型,运用几何模型来验证几何结论。

  4、让学生收集题目,制作错题集

  基础是在无数次练习的基础之上总结出来的,做题如同挖金矿,对待错题就如同对待发掘冶炼金矿一样。学生在做题时,会遇到很多难题和易错题,对于做错了的题目,学生看看就丢到一边,是没有起到练习应有的效果的。教师要促使学生制作一个错题集,专门收集自己做错或者不会做的题目,让学生自己分析做错的原因,为什么会做错,下次如何避免,学生在总结反思的过程中,自然而然就对知识进行了一次梳理。例如,用科学计数法计数是学生经常容易犯错的知识点,学生的粗心导致很简单的问题经常犯错,通过错题集,学生收集表示错的科学计数法,不断总结、强化,从而做到更细心。

  初一数学学习对刚进入初中的学生来说是非常重要的,其既是对小学数学知识的必要深入,也为后续更深层次的学习打下关键的基础。然而,初一学生往往并没有认识到进入初中打好数学基础的重要性。本文针对学好初一数学的重要性和初一数学学习面临的一些问题进行了具体讨论,最后总结出提高学生数学基础知识的几条教学策略,给以后的数学教学提供参考。

  参考文献:

  [1]吴远,学生数学自主能力的培养[J]。巨人教学资源,20xx。

中国传统文化作文150字14

  首先你要有一个好的态度,有些人学习数学,可能有的阶段会喜欢学习,但是某一阶段,对数学就没有什么兴趣了,可能每个人都会有这样一个阶段,但是如果发现自己不喜欢学习数学了,一定要克制自己,在学习数学上,保持一个良好的学习态度,这是你学好数学的第一步。

  充分的利用好上课的时间,上课时间你所掌握的知识,会比你在课下学很长时间都有用,所以珍惜课堂老师所讲的'内容,老师的某些话对我们以后做数学题都很有帮助,如果你上课走神,这些话没有听到,你在做题的时候,可能会走很多弯路,做题的效率也会降低,一旦有这样的情况,可能你就会不喜欢数学了。

  学习最重要的是思考,会思考数学才能学好,数学中的题都是需要我们去举一反三的,没做一道题,都要思考一下,围绕着这道题的知识点,还会有什么样的题型出现,哪怕是遇到不会的题,也要勤加的思考,如果你把知识点自认为学习透彻,那么就用做题检验吧,数学中多做题是必须的,成绩都是用题堆积出来的,很少会有人不做题数学成绩很高的。

中国传统文化作文150字15

  1有理数加法法则

  1、同号两数相加,取相同的符号,并把绝对值相加;

  2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  3、一个数与0相加,仍得这个数。

  2有理数加法的运算律

  1、加法的交换律:a+b=b+a;

  2、加法的结合律:(a+b)+c=a+(b+c)

  3有理数减法法则

  减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

  4有理数乘法法则

  1、两数相乘,同号为正,异号为负,并把绝对值相乘;

  2、任何数同零相乘都得零;

  3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

  5有理数乘法的运算律

  1、乘法的交换律:ab=ba;

  2、乘法的结合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6单项式

  只含有数字与字母的积的代数式叫做单项式。

  注意:单项式是由系数、字母、字母的指数构成的'。

  7多项式

  1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。

  2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。

  8中心对称

  1、定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。

  2、心对称的两条基本性质:

  (1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

  (2)关于中心对称的两个图形是全等图形。

  3、中心对称图形

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

【中国传统文化作文150字】相关文章:

中国的传统文化的作文12-20

实用的中国的传统文化的作文01-15

(合集)中国的传统文化的作文12-23

中国的传统文化高中作文02-16

(必备)中国的传统文化的作文09-21

中国的传统文化作文(精选)09-26

中国的传统文化作文(经典)10-09

中国的传统文化作文11-26

中国的传统文化作文12-14

中国传统文化的作文12-06