方案

解决方案

时间:2022-10-12 14:06:46 方案 我要投稿

【精选】解决方案范文合集4篇

  为了确保工作或事情有序地进行,常常需要预先准备方案,方案指的是为某一次行动所制定的计划类文书。怎样写方案才更能起到其作用呢?以下是小编收集整理的解决方案5篇,欢迎大家分享。

【精选】解决方案范文合集4篇

解决方案 篇1

  1、菲丽奇,帮你轻松拥享家时光。

  2、菲丽奇:新“柜”之选,相伴一生。

  3、菲丽奇:家的气息,美的`印记,爱的期许。

  4、定制林距离,私享菲丽奇。

  5、菲丽奇,为家,为大家。

  6、品质生活,精致懂你,菲丽奇您的家居管家。

  7、专属经典,不可复制——菲丽奇家居定制专家。

  8、定制无双,享你所想——菲丽奇。

  9、菲丽奇:菲衣所思,美丽奇迹。

  10、菲比寻常,丽艳奇美,定制之美,细节之美。

  11、生活新主张,定制更时尚。

  12、定制时尚,菲比寻常。

  13、菲出你的想象,丽炫你的色彩,奇幻你的生活。

  14、菲丽奇,每个家都可以是件艺术品。

解决方案 篇2

  解决方案

  应该做的

  1.孩子顶嘴时不理睬

  对一些无关痛痒的顶嘴尽量不理睬,装作很不在意。让孩子觉得顶嘴无法收到预期的效果,对你没有用,他顶嘴的兴趣自然就会减少了。

  不应该做的`

  1.不要玩控制力游戏

  你知道孩子希望通过顶嘴对你形成控制力,所以你自己首先不要顶嘴。当孩子看到他顶嘴会让你生气或引起你的注意时,他就会把顶嘴当成一种为自己寻找乐趣的娱乐方式。

  2.不要“教”孩子学会顶嘴

  大喊大叫地拒绝孩子提出的问题和要求,只会让孩子学会如何顶嘴。虽然在孩子冲你大喊大叫时,要你控制住自己不要大声叫喊有些困难,但是你要通过尊重孩子,来让孩子学会如何尊重你。

  3.不要因为顶嘴而惩罚孩子

  顶嘴最多也就是让大人非常烦恼,而且也没有任何证据表明,惩罚孩子顶嘴就能让孩子学会如何有礼貌地说话。惩罚孩子,只会让孩子感到恐惧——而不能学会什么是尊重。

解决方案 篇3

  墙多也不怕 路由玩接力

  挑战题描述

  我家里有两个路由器,一个正在使用中,一个处于备用状态,因为卧室离路由器距离较远,所以信号很弱。能不能将备用路由器充当AP进行信号扩散?如何进行桥接?想知道详细步骤,曾经也试过几次,但都失败了,望给予答复。

  解题思路

  日常家用中,由于家里的墙壁阻隔造成信号衰减的情况很常见。要突破墙壁的阻隔,使用路由接力的方法也是一个可行的方案。大家知道网络信号可以通过网线和无线网络传输,因此我们可以根据家里是否有网线来使用不同的方法传输信号。

  解题方法

  卧室已经布设网线

  对于很多新房,大家在装修的时候就已布设了网线,这样我们只要再接个无线路由器作为二级路由器接力即可。这里假设客厅为A路由器,备用的为B路由器。

  首先在任意一部连接A路由器的电脑上打开“网络和共享中心”,点击“本地连接→详细信息”,在打开的窗口记下其中“IPv4默认网关”的IP地址,这个是A路由器的网关地址。

  切换到“网络参数→WAN口设置”,连接类型选择“动态IP”,这样和A路由器的网线接到B路由器上后,B路由器会获得自动分配的IP地址。在卧室开启B路由器的无线参数即可无线上网了。

  卧室没有网线

  如果你的卧室没有布设网线,那么就需要借助路由器的WDS无线桥接功能来实现信号的'无线转接。

  成功连接后返回“网络状态”,这里查看其中“WDS状态”是否显示“已成功”,如果显示成功连接,剩余的设置和普通路由器一样,开启无线参数,这样在卧室就可以通过接收B路由器的信号上网了

  小知识:什么是WDS无线扩展

  WDS(Wireless Distribution System),即无线分布式系统。它是无线网络的中继器,对于支持WDS扩展技术的路由,它可以通过无线的方式(类似手机的Wi-Fi连接)连接到上一级路由器,成功连接后则可以继续发射无线信号(类似普通无线路由器)供其他设备上网,非常方便在没有网线的环境下快速布设无线网络。

解决方案 篇4

  1概述

  近年来,随着社会经济的高速发展,我国城市轨道交通进入了快速发展阶段,其安全性和舒适性得到社会的普遍关注,支撑城市轨道交通安全运营生产业务不断增加,现有基于2.4GWLAN的车地通信系统面临挑战。随着4G无线宽带技术的普及,轨道交通行业建设大容量车地无线通信系统成为可能。同时,为节省有限的频率资源,减少重复建设,充分发挥系统能力,建设基于TD-LTE技术的无线通信综合承载网,综合承载城市轨道交通信号系统、乘客信息系统(PIS)、视频监控系统等生产系统的业务信息,成为未来轨道交通行业发展的必然。

  2轨道交通车地无线通信业务介绍

  在轨道交通行业中,涉及车地无线通信业务的主要包括以下几个系统。

  2.1 信号系统

  信号系统传送的信息主要为列控CBTC信息,其中地面设备对列车传输的信息包括移动授权、限速信息、列车识别号、运营调整指令等信息,列车对地面设备传输的信息包括列车车组号、屏蔽门开/关命令、本列车的定位信息、本列车的速度信息等。

  在高速移动状态下,无线通信综合承载网需要提供满足宽带、稳定、具有QoS保障和实时性要求主备冗余的双向数据通道。

  1)列控系统实时性、可靠性及安全需求

  a.实时性、可靠性要求

  *列控信息经有线和无线网络传输延迟时间应小于150ms。

  *单网络信息传输的丢包率应小于1%,误码率小于10-6。

  *车-地通信单网络的越区切换中断时间应在100ms以内。

  *可靠性:系统设备平均无故障时间为MTBF>2×104h。

  *可用性:系统的可用性指标≥99.99%。

  *可维护性:系统设备的平均故障修复时间为MTTR<30 b.="" b=""><30min。

  b.列控安全性要求

  *传输通道应采用独立的热备冗余物理通信通道。

  *访问控制要求:要求信号系统A/B通道相互独立。

  *在安全监测、审计与监控、网络反病毒和备份与灾难恢复等方面应制定相应的安全措施,同时具备足够的防止内、外人员进行违规操作和攻击破坏的能力等。

  *把不同类型的数据传输通道应相对独立或采用经由不同的虚拟局域网(VLAN)进行传输。

  *无线网络的安全性:车载无线单元与基站之间在传递数据前,必须建立授权并关联。

  2)业务带宽需求

  a.正线需求

  信号系统需在车头、车尾分别冗余配置连接A、B承载网的传输通道。每传输通道上/下行信息承载需求各为100kbit/s,考虑25%余量后,承载网络按上/下行125kbit/s设计。每列车单网承载上/下行列控信息业务带宽各为2×125kbit/s=0.25Mbit/s。

  正常情况下,每个RRU小区内的列车数为2列车,无线通信综合承载网按4列车预设承载需求,单网业务信息承载带宽为上/下行各1Mbit/s。

  特殊情况下,多辆列车进入小区时,车地无线承载网络可根据QoS等调度策略,优先保障列控信息的安全传输,以满足列控信息传输实时性、可靠性及安全性需求。

  b.停车场和车辆段信息承载需求

  在车辆基地(停车场和车辆段)场景下,只有部分列车需传递信号系统车载自检(及车辆自检等)信息,上/下行各1Mbit/s即可满足列控业务信息承载需求。

  2.2 乘客信息系统(PIS)

  PIS系统需将播控中心下发的播放节目,如新闻广播、旅行指南、换乘信息、在线广告等便民信息在车载乘客信息系统显示屏上实时显示。无线通信综合承载网需提供匹配PIS需求的连续高带宽、低时延车地无线传输通道。

  PIS图像传输带宽需求如下:按照1080P分辨率考虑,H.264编码方式,采用组播方式进行数据传输,带宽需求为下行8Mbit/s。

  2.3 视频监控系统

  在轨道交通车地无线的应用场景下,车载视频监控系统视频监控图像回传是无线通信综合承载网最大的上行传输业务需求,其重要性仅次于信号系统业务需求。

  视频监控系统视频监控图像回传带宽需求如下:按照720P分辨率考虑,采用H.264编码方式,每路图像带宽为2Mbit/s,按照大小区最多上传2路图像考虑,共需带宽为上行4Mbit/s。

  2.4 紧急文本信息

  控制中心调度员可向列车发送紧急文本信息,在列车上紧急文本信息与PIS图像叠加后在客室显示屏上播出。

  紧急本文信息传输带宽需求:单列车传输带宽需求为下行20kbit/s。正常情况下,无线通信综合承载网单小区容量按4列车设计,信息承载带宽为下行100kbit/s。

  2.5 其他系统

  在轨道交通项目中,还有安防车载监测信息、车载火灾报警系统(FAS)信息、列车运行状态监测信息回传业务需要无线通信综合承载网进行承载,避免单独建设浪费投资。

  上述传输带宽需求:单列车传输带宽需求上行100kbit/s。正常情况下,无线通信综合承载网单小区容量按4列车设计,信息承载带宽为上行400kbit/s。

  3技术体制选择

  1)传统车地无线体制及存在的问题

  国内已开通的城市轨道交通工程信号系统均采用无线局域网技术,运行在2.4G频段。由于2.4G频段属于开放频段,极易受到干扰,给轨道交通安全运营带来了隐患。近些年,深圳地铁就发生了由于乘客的无线设备干扰地铁信号系统,并导致区间停车的情况发生。

  国内已开通的轨道交通工程乘客信息系统车地无线部分采用两种技术:WLAN和DVB-T。WLAN技术并不是针对快速移动而研发的技术,虽经过厂家不断更新,制定出快速移动切换的解决方案,但在轨道交通行业实际使用过程中,还是存在切换过程中降低数据传输效率、带宽不稳定的情况,在已开通的工程中,并不能完全满足设计要求的视频直播和列车监控图像实时上传的功能,WLAN技术只是在没有更好技术情况下的无奈选择。DVB-T技术单套设备配置时,仅支持地面至列车的单向数据传输,无法实现列车监控图像实时上传的功能,同时也需申请专用频率。

  2)车地无线网络技术的发展趋势

  针对轨道交通行业采用WLAN技术存在安全隐患的问题,20xx年2月工业与信息化部发布了“关于重新发布1785~1805MHz频段无线接入系统频率使用事宜的通知”,该文明确指出1785~1805MHz频段可用于城市轨道交通行业专用通信,解决了城市轨道交通车地通信迫切需要的专用频率问题。LTE技术以其大带宽、高可靠性、有效避免干扰、覆盖范围大、切换少等方面的优势,完全能够满足无线通信综合承载网的要求。目前,LTE已经有成熟的产品在运营商中使用,并且在郑州地铁和朔黄铁路等轨道交通工程中得到应用,并在20xx年完成了TD-LTE系统通信性能测试。

  3)无线通信综合承载网技术体制

  在地铁应用环境中,LTE拥有专用频点的情况下,相对于WLAN技术的优势。在轨道交通中,列车的高速移动会导致多普勒频移增大,LTE在设计时就考虑高速移动需求,有专门的频偏估算和纠错算法,增强的算法可以容忍频偏范围超过1kHz,保证高速场景性能。

  相对于目前应用的WLAN设备,LTE具有的抗外界干扰以及高速移动性能,具有明显的优势。根据以上分析,建议采用LTE技术组建无线通信综合承载网,综合承载信号系统、PIS、视频监控系统、紧急文本信息等车地通信业务。

  4组网方案

  1)LTE技术体制概述

  LTE网络架构采用基于IP的扁平化网络结构,由核心网子系统(EPC)、无线网子系统eNodeB及终端设备组成,其中,eNodeB包含分布式基带处理单元(BBU)和射频拉远单元(RRU)设备。

  EPC由移动性管理实体(MME)、归属用户服务器(HSS)、服务网关(S-GW)及分组网关(PGW)、路由器及根据需要配置的MBMS-GW组播网关等设备构成。

  TD-LTE技术具备上下行资源可调配的特点,可根据业务需要灵活配置上下行业务比例。

  2)TD-LTE技术的宽带移动性优势

  移动接入性强:采用自动频率校正确保高速移动(>120km/h)场景下的无线链路质量,具备优良的高速移动状态下的宽带接入能力。

  抗干扰能力强:采用ICIC、IRC等专业技术,有效降低小区边缘频率干扰,提高小区吞吐率,若使用行业专有频段,外部干扰少。

  QoS机制:LTE系统定义了标准的QCI属性,所有QCI属性均可根据实际需求预配置在eNodeB上,这些参数决定了无线侧承载资源的分配。在资源受限的条件下由ARP参数决定是否接受相应的承载建立请求。

  3)组网方案

  本工程组建的无线通信综合承载网,采用两套LTE设备冗余组成A、B两张网,全线按照链状网结构分别部署两套完全相同的“BBU+RRU”网络,通过专用传输系统提供的传输通道分别接入控制中心设置的两套LTE核心网设备。

  隧道区间采用RRU+漏泄同轴电缆方式覆盖,车辆段采用RRU+天线方式覆盖。两张网络完全独立,并行工作,互不影响。

  每个网络均包括EPC、eNodeB、车载无线终端(CPE)。信号系统信息在两套网络上同时传输,以保证其对网络可靠性的.要求,由信号系统同时接收并判断确定使用有用信息。

  4)频率规划及指配

  a.网络承载业务带宽需求

  根据第2节业务带宽需求分析,无线通信综合承载网需要承载的业务信息。

  b.频率资源规划

  正线(地下部分)无线频率需求:

  *根据业务信息承载统计,正线A、B双网共需20MHz频率资源。

  *A网使用15MHz带宽组网。

  *B网使用5MHz带宽组网。

  车辆基地(地面部分)无线带宽需求:

  *根据业务信息承载统计,A、B双网共需10MHz频率资源。

  *A网使用5MHz带宽组网。

  *B网使用5MHz带宽(与正线B网组网方式始终一致)。

  c.需要说明的问题

  由于A网在车辆段(地面)和正线(地下)采用不同的频率带宽组网,在2个不同频带的eNodeB小区边界位置(位于出入段线附近)会产生1~2s的链路中断时间,用于注册到A网的车载终端执行小区重选操作;B网在正线和车辆基地的组网方式始终一致,切换不受影响。

  在上下行时隙配置一致时,两个TD-LTE网络可以同站址共存。本方案通过对基站和车载设备侧的合路器加装滤波器进一步消除网络干扰,提高频谱利用率。

  5)与运营商无线频率干扰

  无线通信综合承载网与运营商间干扰主要需考虑TD-LTE与其频段最接近的运营商无线系统间的干扰,主要为FDD上行频率1755~1785MHz,移动DCS下行1805~1830MHz,通过分析运营商无线系统和TD-LTE(1785~1805MHz)系统杂散和阻塞要求,两系统间必须具备80dB的隔离度,既运营商无线系统的频率和TD-LTE(1785~1805MHz)间需设置5MHz的保护间隔。

  在实际工程中,轨道交通建设方可与运营商进行协商,要求运营商进行频率规划,在轨道交通中不引入与TD-LTE(1785~1805MHz)相邻的频段,且保证5MHz的频率间隔。

  6)QoS规划

  基于LTE技术的无线通信综合承载网承载了信号系统列控CBTC信息、PIS系统、视频监控系统、紧急文本信息等业务,各业务的ARP分配由高到低;同时根据各业务对可靠性、时延的要求,系统为其分配不同的QCI。

  7)无线信号覆盖设计

  a.系统指标

  根据无线通信综合承载网的承载需求,无线网络覆盖率的设计目标需要满足如下指标。

  *要求在覆盖区域内,TD-LTE无线网络覆盖率应满足RSRP≥-95dBm的概率大于95%;

  *要求在同频组网条件下,满足车地承载业务信息需求的概率大于95%;

  *无线接通率:基本目标>98%;

  *掉线率:基本目标98%;

  *块误码率(BLER):基本目标<10%,挑战目标<1%。

  b.区间覆盖

  覆盖方式:无线通信综合承载网无线覆盖可以采用天线和漏缆覆盖,对于地下线路建议采用漏缆方式进行覆盖,对于车辆段(维修基地)和地上线路建议采用天线覆盖。

  漏缆方案:对于单漏缆和双漏缆的选择,不能仅仅考虑设备数据吞吐能力的差异,还需要考虑漏缆部署的可靠性和安全性,当其中一根漏缆出现问题时,另外一根漏缆仍可以正常使用,系统可以通过传输模式自动转换(如从TM3转为TM1模式)消除无线覆盖的单点故障。另外双漏缆部署,按双流方式实现MIMO空间复用,可以有效提高信道的容量。综合以上分析,建议使用双漏缆方案。

  5实验测试

  20xx年上半年,由北京市轨道交通建设管理有限公司组织,多家LTE设备厂家、信号系统设备厂家、乘客信息系统设备厂家和视频监控系统设备厂家参与,共同进行了无线通信综合承载网试验。本次试验共分为两步:第一步为实验室测试,第二步为现场测试。20xx年上半年进行的实验室测试验证了LTE系统在城市轨道交通车地无线通信综合承载的可用性;20xx年下半年进行的现场测试对无线通信综合承载网及各项技术指标进行了验证,包括丢包率、切换试验和不同频宽的吞吐量,现场测试结果验证了基于LTE技术的无线通信综合承载网满足轨道交通信号系统、PIS系统、视频监控系统、紧急文本下发等业务需求。

  6结论

  综上所述,经过业务分析、技术比选和LTE技术研究,确立了基于LTE技术无线通信综合承载网的技术方案。实验测试数据验证了该技术方案的可用性和可行性。建设基于LTE技术无线通信综合承载网,可以有效解决专用频率资源的问题,同时还可以大大减少工程投资。因此,建设基于LTE技术的无线通信综合承载网将成为未来轨道交通建设的必然选择。

【解决方案】相关文章:

通用解决方案03-09

【必备】解决方案(精选14篇)12-09

实用的解决方案(精选18篇)09-16

精选解决方案范文8篇10-16

生鲜配送平台解决方案12-13

如何写解决方案03-15

it解决方案岗位职责03-31

【精选】解决方案范文5篇10-25

精选解决方案范文10篇11-25

解决方案范文(精选10篇)07-25