精选平行四边形教案3篇
作为一名无私奉献的老师,时常需要编写教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是小编收集整理的平行四边形教案3篇,仅供参考,欢迎大家阅读。
平行四边形教案 篇1
一、教学内容:P72
二、教学目标:
1、引导学生直观地认识平行四边形。
2、培养学生动手操作和实践能力。
三、教学准备:
长方形框架、七巧板
四、教学过程:
(一)复习导入
(二)探索新知
1、做一做
(1)教师演示:出示长方形框架
这是什么图形,然后拉动,变成新形状。提示学生认真观察。
(2)学生动手操作,做一做。
(3)认识平行四边形
A、认识平行四边形实物(观察新图形)
B、认识平行四边形平面图
2、想一想
平行四边形与长方形的联系:对边相等,四个角不是直角,有的是锐角,有的是直角。
3、说一说
说一说平时见到的.平行四边形
4、画一画
5、拼一拼(用七巧板)
(三)全课
今天我们学习了什么知识,用什么方法认识平行四边形。
(四)作业
在现实中寻找平行四边形
平行四边形教案 篇2
教学内容:
教科书数学第八册第22~26页
教学目标:
1.通过观察操作认识平行四边形的特征,使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.经历探索平行四边形面积计算公式的过程,使学生初步认识转化的思考方法在研究平行四边形面积时的运用。
3.培养观察、比较、推理和概括能力,渗透转化思想的空间观念。
教学重难点:
探索平行四边形面积计算公式的推导过程。
教具准备:
1.课件
2.教师准备一个平行四边形的纸片。
3.学生准备好学具
教学过程:
活动一:认识平行四边形的特征。
信息窗1,学生观察。
师:你发现了什么信息?你想提一个什么数学问题?学生以小组为单位讨论。
(生交流讨论的情况)
平行四边形的特征:对边平行且相等,对角相等。
师:什么叫平行四边形?(两组对边分别平行的四边形叫做平行四边形。)
师:先领学生复习平行四边形的底和高。再让学生指出平行四边形的底,指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
活动二:学习平行四边形面积的'计算公式。
师:解决1号虾池的面积是多少。
我们已经知道1号虾池的形状是平行四边形的,要求1号虾池的面积,就是求平行四边形的面积,那么怎样求平行四边形的面积?请大家猜测一下。
学生活动:用手中的学具操作一下。
师:现在交流你们想出的方法。
师:同学们有各自的猜想,到底谁的对呢?用什么办法来验证。
师:哪个小组来汇报一下你们是怎样来验证的 ,你们的结论是什么?
提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。
(2)教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在演示。
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
教学用字母表示平行四边形的面积公式。
板书:S=ah,
S=ah,或者S=ah。
应用总结出的面积公式计算平行四边形的面积。
师:现在来求:1号虾池的面积是多少?
学生列式:90X60=5400(平方米)
活动三:
解决2号虾池能放养多少尾虾苗?
交流答案,交流解题思路。
活动四:巩固练习
自主练习的1、2、5
活动五:
课堂小结:
这节课我们共同研究了什么?
怎样求平行四边形的面积?
平行四边形的面积计算公式是怎样推导出来的?
平行四边形教案 篇3
教学内容:第70-73页练习十七第1-3题
教学要求:
1、理解平行四边形面积计算公式,能正确地计算平行四边形面积;
2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。
教学重点:运用面积公式解答实际问题。
教具、学具准备:教师准备微机及多边形、平行四边形课件两组、边可活动的平行四边形框架。学生准备任意大小(画有高)的平行四边形纸片、剪刀。
教学过程:
一、质疑导入
1、指出下面平行四边形的底和高各是几厘米?
2、向学生出示可拉动的长方形框架,问:要求这个长方形的`面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)
3、分别用手拉长方形相对的一对角,使其变形为平行四边形后,问:原来的平行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:平行四边形面积计算)
二、引导探究
(一)、初探
1、微机出示第70页左图,让学生说出平行四边形底和高各是多少厘米,然后数出它的面积。
2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的面积。
3、让学生观察、比较:
(1)两图形的面积都是18平方厘米,那么平行四边形的底和高与长方形的长和宽有什么关系?
(2)从上面的比较中你想到什么?
(二)、深究
1、做导引题下图中阴影部分面积是多少?
微机演示剪拼过程后让学生回答:
(1)剪拼前后,图形形状变了没有?面积改变没有?
(2)阴影部分面积是多少?
(3)解这道题你想到什么?
2、剪拼
(1)刚才用剪拼的方法解决了一个求面积的问题,你能不能用剪拼的方法,把平行四边形转化成学过的图形,求出它的面积呢?拿出平行四边形纸片,剪一剪,拼一拼,试试怎么样。
(2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。
3、引导学生分析得出:沿着平行四边形底边上的任意一条高,都可以把平行四边形剪拼成一个长方形。
4、归纳
(1)讨论:
A平行四边形剪拼成长方形后,两种图形的面积是否改变了?
B剪拼成的长方形的长和宽分别与原平行四边形什么线段长度相同?
C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?
(2)归纳、总结,推导公式。
A因为长方形面积=长×宽
所以平行四边形面积=底×高
B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah
C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。
三、深化认识
1、验证公式:
让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。
2、应用公式:
(1)引导学生解课本第72页例
(2)完成课本第72页做一做1
3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?
四、全课总结
五、课堂作业
1、第72页做一做2
2、练习十七1
3、练习十七2、3
板书设计:
平行四边形的面积
【平行四边形教案】相关文章:
平行四边形教案优秀01-22
认识平行四边形教案03-05
《平行四边形的面积》教案01-02
平行四边形的认识教案07-30
《平行四边形的认识》教案03-15
平行四边形面积教案03-09
平行四边形的面积教案07-24
平行四边形教案四篇05-24
平行四边形和梯形教案12-14
精选平行四边形教案4篇05-21