教案

正数与负数教案

时间:2025-10-06 09:15:42 教案 我要投稿

(热门)正数与负数教案

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?以下是小编收集整理的正数与负数教案,仅供参考,欢迎大家阅读。

(热门)正数与负数教案

正数与负数教案1

  学习目标:

  1.了解负数产生的背景是从实际需要产生的;会判断一个数是正数还是负数。

  2.会用正负数表示生活中常用的具有相反意义的量;知道整数、分数的分类。

  3. 培养学生的数学应用意识,渗透对立统一的辩证思想。

  教学重点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的具有相反意义的量。

  教学难点:了解正数与负数是由实际需要产生的及会用正负数表示生活中常用的.具有相反意义的量。

  教学过程:

  一.自主学习(导学部分)

  1.在中国地形图上,可以看到有一座世界最高峰----珠穆朗玛峰,图上标有8848;还有一个吐鲁番盆地,图上标有-155 (单位:米)。这种数通常称为海拔高度,它是相对于海平面来说的。你知道海平面的高度通常用什么数表示吗?请说出图中所示的数8848和-155表示的实际意义。

  2.你看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读。(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温25C,10C,零下10C,零下30C。

  为书写方便,将测量气温写成25,10,―10,―30。

  3.让学生回忆我们已经学了哪些数?它们是怎样产生和发展起来的?

  在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,为了表示没有,引入了数0;有时分配、测量的结果不是整数,需要用分数(小数)表示。总之,数是为了满足生产和生活的需要而产生、发展起来的。

  二.合作、探究、展示

  1.正、负数的读法与写法:

  号读作负,如117.3,读作负五, 号是不可以省略的

  +号读作正.如 ,读作正三分之二,+ 可以省略不写.

  2.议一议

  有位同学说一个数如果不是正数,必定就是负数. 你认为这句话对吗?为什么?

  4.例1指出下列各数中的正数、负数:

  +7,-9, ,-4.5,998, ,0

  练一练:课本P13、2 3

  5.相反意义的量:

  在日常生活中,常会遇到这样一些量(事情)具有相反意义。向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义

  你能举出几对日常生活中具有相反意义的量吗?

  例2(1)如果向北8千米记作+8千米,那么向南走5千米记作什么?

  (2)如果运进粮食3t记作+3,那么4t表示什么?

  练习:课本P13/2 3

  6. 统称为整数。

  统称为分数。

  三.巩固练习

  1.比0大的数叫做__ ____; 比0小的数叫做___ ____;

  2.既不是正数,又不是负数的数是__ ___.

  3.数 3,-0.2,1,0, 中,负数有 个,正数有 个.

  4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数

  (1)、1,-1,1,-1,1,-1,1,-1, , , ,

  (2)、1,-2,3,-4,5,-6,7,-8, , , ,

  5.小莉说:一个数,不是正数,必是负数。小明说:带有-号的数就是负数,带有+号的数就是正数 。你认为他们的说法正确吗?谈谈你的看法。

  四.课堂小结

  1、通过本节课学习,我们知道了一种新的数----负数。你是如何区分一个数是正数还是负数的?

  五.布置作业

  六.预习指导

正数与负数教案2

  教学目标:

  1、使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;

  2、会初步应用正负数表示具有相反意义的量;

  3、使学生初步了解有理数的意义,并能将给出的有理数进行分类;

  4、培养学生逐步树立分类讨论的思想;

  5、通过本节课的教学,渗透对立统一的辩证思想。

  一、重点、难点分析

  教学重点:

  了解正数与负数是由实际需要产生的以及有理数包括哪些数。

  教学难点:

  学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。

  正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。

  关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。

  二、教法建议

  这节课是在小学里学过的数的`基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.

  为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。

  三、正数与负数概念的理解

  1、对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。例如:一定是负数吗?答案是不一定。因为字母可以表示任意的数,若表示正数时,是负数;当表示0时,就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。

  2、引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

  3、到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

  4、通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

  四、有理数的分类

  整数和分数统称为有理数。

  1、正整数、零、负整数统称为整数;正分数、负分数统称为分数。

  2、整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。

  3、注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。

  4、分数和小数的区别:

  分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。

  5、到目前为止,所学过的数(除外)都是有理数。

正数与负数教案3

  一、教学目标

  知识与技能:使学生了解正数与负数是从实际需要中产生的;

  过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

  情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

  二、教学重点和难点

  负数的引入和意义

  三、教学过程

  创设情景,生活实例引入,观察猜想,合作探究

  (一)、从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的

  为了表示一个人、两只手、,我们用到整数1,2,

  为了表示半小时、四元八角七分、,我们需用到分数1/2和小数4.87、

  为了表示没有人、没有羊、我们要用到0.

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.

  (二)、师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.

  它们是具有相反意义的两个量.

  现实生活中,像这样的相反意义的量还有很多.

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,高于和低于其意义是相反的

  又如,某仓库昨天运进货物 吨,今天运出货物 吨,运进和运出,其意义是相反的

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的`量才好呢?

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上+或-号,就把两个相反意义的量筒明地表示出来了.

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;

  运进纲物 吨,记作+ ;运出货物 吨,记作- .

  教师讲解:什么叫做正数?什么叫做负数.

  强调,数0既不是正数,也不是负数,它是正、负数的界限,表示基准的数,零不是表示没有,它表示一个实际存在的数量.并指出,正数,负数的+-的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号

  (三)、运用举例 变式练习

  例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

  -11,4,8,+73,-2,7, , ,-8,12, - ;

  正数集合 负数集合

  此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合

  课堂练习

  任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

  正数集合:{ },

  负数集合:{ }

  四、课堂小结

  由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上-号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃

  五、作业布置

  1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

  2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?

  3.在下列各数中,哪些是正数?哪些是负数?

  -16,0,004,+ ,- , ,25,8,-3,6,-4,9651,-0,1.

  4.如果-50元表示支出50元,那么+200元表示什么?

  5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位温0.1米记作什?

  6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

  7.一物体可以左右移动,设向右为正,问:

  (1)向左移动12米应记作什么?(2)记作8米表明什么?

正数与负数教案4

  教学目标:

  1、明白生活中存在着无数表示相反意义的量,能举例说明;

  2、能体会引进负数的必要性和意义,建立正数和负数的数感。

  重点:

  通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

  难点:

  对负数的意义的理解。

  教学过程:

一、知识导向:

  本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

  二、新课拆析:

  1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

  如:0,1,2,3,…,2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的'对立面。

  如:汽车向东行驶 3千米和向西行驶2千米

  温度是零上10°C和零下5°C;

  收入500元和支出237元;

  水位升高1.2米和下降0.7米;

  3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

  一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

  如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

  概括:我们把这一种新数,叫做负数,如:-3,-45,…

  过去学过的那些数(零除外)叫做正数,如:1,2.2…

  零既不是正数,也不是负数

  例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…

  三、阶梯训练:

  P18 练习:1,2,3,4。

  四、知识小结:

  从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

  五、作业巩固:

  1、每个同学分别举出5个生活中表示相反意义量的的例子;

  并用正、负数来表示;

  2、分别举出几个正数与负数(最少6个)。

  3、P20习题2.1:1题。

正数与负数教案5

  教学目标

  1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2, 能区分两种不同意义的量,会用符号表示正数和负数;

  3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点

  正确区分两种不同意义的量。

  知识重点

  两种相反意义的量

  教学过程

  (师生活动) 设计理念

  设置情境

  引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些以前学过的数够用了吗?下面的例子

  仅供参考.

  师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的`班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有-的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知 问题3:前面带有一号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解.

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

  这阶段主要是让学生学会正数和负数的表示.

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

  问题4:请同学们举出用正数和负数表示的例子.

  问题5:你是怎样理解正整数负整数,,正分数和负分数的呢?请举例说明.

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习 教科书第5页练习

  小结与作业

正数与负数教案6

  一、教材分析

  1、教学目标、重点、难点。

  教学目标:

  (1)通过实例,感受引入负数的必要性。

  (2)了解正数、负数的概念。

  (3)会区分两种不同意义的量,会用正负数表示具有相反意义的量。

  重点:理解相反意义的量,理解负数的意义。

  难点:正确区分两种相反意义的量,并会用正负数表示。

  2、例、习题的意图

  通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性。通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念。

  例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解。让学生准确的认识和区分正数与负数。

  在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示。让学生进一步掌握如何用正、负数表示相反意义的数量。并理解相反意义与数量的含义。进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。

  补充例3是例2的延续,在不明确哪一种意义的量用正数表示的情况下,让学生表示相反意义的量。通过例3的学习,训练学生发现生活中的具有相反意义的数量,理解、体会正、负意义的相对性,并恰当的用正、负数表示。培养学生的发散思维。

  补充例4则是对例3正、负数表示相反意义的量的加强,通过训练,让学生说出正、负数所表示的实际意义,进一步培养学生正、负数的应用能力,逐步提升正、负数相对性和相反性的理解。

  习题的设置是针对例题掌握情况的检查。教科书p5练习(2)、(3)、(4)是针对例2而设置的。补充练习1检查学生对相反意义与数量的理解。补充练习2是对例3的掌握情况的检查。

  3、认知难点与突破方法:

  对于相反意义及数量含义的理解,以及区分两种不同意义的量是本课的难点。在教学中注意思维的层次,首先要让学生明确数量指的是具体事物的多少。再分析是否是同一类事物,在是同类事物的基础上确定是否是相反关系。强化学生分析的层次性。在操作上,通过大量实际生活材料的分析和例2的学习让学生对相反意义及数量含义建立一定的感性认识,教师及时的给予适当的归纳,让学生建立初步的理性认识,最后通过练习1的判断对错进一步强化巩固对概念的理解。

  用正、负数表示具有相反意义的过程中体现的正与负的相对性是另一个难点,通过例3的教学,鼓励学生发散思维,多角度认识具有相反意义的量,进而让学生认识正、负的相对性,通过例4的教学强化进一步强化对正、负的相对性的理解。

  二、新课引入

  通过回顾小学学过的数的类型,归纳出我们已经学了整数和分数,然后举一些生活中具有相反意义的量,说明为了表示相反意义的量,我们需要引入负数。强调数学的严密性。

  教师举例:今天我们已经是七年级的学生了,我是你们的数学老师,下面我自我介绍一下,我的名字是***,身高1.71米,体重75.5千克,今年32岁,我们班有50名学生,其中男生23人,占全班总人数的46%,女生26人占总人数的53%。

  问题1:老师在刚才的介绍中出现了几个数?分别是什么?试将这些数按以前学过的分类方法分类。学生思考、交流后教师总结:整数和分数两类。

  问题2:生活中,仅有整数和分数就够用了吗?

  引例:学生观察前面的几幅画中用到了什么数,让学生感受引入负数的必要性。讨论这些带有符号的数在实际中表示什么意义?

  在学生交流的基础上教师归纳总结:以前学的数已经不够用了,在实际生活中我们需要引进一些新的数,只有这样才能更好的表示生活实际中数量关系。

  三、例题讲解

  教师引导学生通过观察上例中出现的这些数与以前学过的数的区别,进而归纳出正负数的概念。

  补充例1:(1)下各数哪些是正数,哪些是负数?

  -1,2.5,0,-3.14,,120,-1.732

  正数前面的`+号通常省略。了解正负数形式上的区别(符号不同),形成中的联系(在以前学习的非0整数和分数前加上符号)

  问题3:在整数前加上-号后这个数还是整数吗?在分数前加上-号后这个数还是分数吗?使学生对正整数、正分数、负整数、负分数有初步的了解。

  (2)指出(1)中的分数、整数。(为有理数的学习做铺垫)

  问题4:为什么要引出负数?通常在日常生活中我们用正数和负数分别表示怎样的量?学生回答问题。(用正负数表示相反意义的数量)

  补充例2:用正、负数表式下列各量。

  (1)若把上升5m记作+5m,那么下降5m记作。

  (2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈表示为

  (3)向南走5000米记作-5000米,那么向北走8000米记作。

  学会用正、负数表示具有相反意义的量,相反意义的量包含两个要素:一是意义相反。如向东的反向是向西,上升与下降,收入与支出。二是他们都是数量。

  练习思考书P5观察,在此基础上让学生指出生活中具有相反意义的例子。(检查学生对相反意义的数量的理解程度。

  补充例3:用适当的数值表示下列实际问题的数量。

  (1)某地白天的温度是30℃,午夜的温度是零下10℃。

  (2)某出租车在东西走向的大街上向东行驶3km,又向西行驶了5km.

  (3)一商店在一小时内收入200元,又支出150元。

  (4)甲公司本月的销售额增长13%,乙公司本月的销售额下降了2.9%

  本例题是一发散性问题,没有规定哪种意义的量用正数表示,所以先要指明哪种意义的量用正数表示,其相反意义的量用负数表示。在解题中鼓励学生的不同思维。比如:若收入200元,记作:-200元,则支出150元记作+150元。反之,若收入200元,记作:+200元,则支出150元记作-150元。进一步加深对正、负数相反性及相对性的理解。同时要明确,通常情况下,零上、增长、收入用正数表示,零下、减少、支出用负数表示。

  补充例4:解释下列各语句中表示各数量的数值的实际意义。

  (1)七月份的物价比六月份增长了25%,八月份比七月份增长了-2.3%。

  (2)经过绿化,我国沙漠化土地每年增长-4.5%。

  (3)某仓库上午入库货物-3500t。

  (4)缆车上升了-78米。

  (5)小红这次考试分数比上次增加了+2分。

  (6)盈利-300元。

  分析:强调负数表示的是与其具有相反关系的量。(1)降低2.3%,(2)降低4.5%,(3)出库3500t,(4)下降78米,(5)增加了2分,(6)亏损300元。

  四、课堂练习:

正数与负数教案7

  教学目标

  1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2, 能区分两种不同意义的量,会用符号表示正数和负数;

  3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点 正确区分两种不同意义的量。

  知识重点 两种相反意义的量

  教学过程

  (师生活动) 设计理念

  设置情境

  引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考。。

  师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中·共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的'严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

  这些问题都必须要求学生理解。

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

  这阶段主要是让学生学会正数和负数的表示。

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。

  问题4:请同学们举出用正数和负数表示的例子。

  问题5:你是怎样理解“正整数”“负整数,’正分数”和“负分数”的呢?请举例说明。

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习 教科书第5页练习

  小结与作业

  课堂小结

  围绕下面两点,以师生共同交流的方式进行:

  1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  密切联系生活实际,创设学习情境。本课是有理数的第一节课时。引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的。为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的。

  负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。。

  这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

正数与负数教案8

  1.1 正数和负数

  〔教学目标〕

  1、了解负数的产生是生活、生产的需要;

  2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;

  3、理解具有相反意义的量的含义;

  4、熟练地运用正、负数描述现实世界具有相反意义的量;

  5、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

  〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点,正确理解负数、数0表示的量的意义是难点。用正、负数表示生活中具有相反意义的量是重点,正、负数概念的综合运用是难点。

  〔教学过程〕

  一、负数的'引入

  我们知道,数产生于人们实际生产和生活的需要。[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3??;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数。

  在生活、生产、科研中经常遇到数的表示与数的运算的问题。

  [投影]1.北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?

  2.有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?

  3.20xx年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?

  上面三个问题中,哪些数的形式与以前学习的数有区别?

  数-3、-2、-2.7%与以前学习的数有区别。-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。

  像3、2、2.7%这样大于零的数叫做正数;像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,?就是3、2、0.5、1/3,?。

  这样,一个数由两部分组成,数前面的“+” “-”号叫做它的符号,后面的部分叫做这个数的绝对值。

  请你指出数-3.2,5,-2/3的符号和绝对值。

  二、对数“0”的重新认识

  大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢? 数0既不是正数,也不是负数,它是正数和负数的分界。

  我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。

  0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

  三、用正负数表示相反意义的量

  把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。又如记录账目时,通常用正数表示收入款额,负数表示支出款额。

  请大家看课本第3面的图1.1-2、1.1-3。

  你能解释上面图中正数和负数的含义吗?

  图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。

  你能再举一些用正负数表示数量的实际例子吗?

  通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。

  四、巩固练习

  五、实际问题

  [投影]例(1)一个月内,小明体重增加2公斤,小华体重减少1公斤,小强体重无变化,写出他们这个月的体重增长值;

  (2)20xx年下列国家的商品进出口总额比上年的变化情况是:

  美国减少6.4%,德国增长1.3%,

  法国减少2.4%,英国减少3.5%,

  意大利增长0.2%,中国增长7.5%。

  写出这些国家20xx年进出口总额的增长率。

  分析:首先我们来弄清楚增长-1是什么意思?增长-6.4%是什么意思?

  增长-1表示减少1;增长-6.4%表示减少6.4%。

  解:(1)这个月小明体重增长2公斤,小华体重增长-1公斤,小强体重增长0公斤。

  (2)六个国家20xx年商品进出口总额的增长率:

  美国 -6.4%,德国 1.3%,

  法国 -2.4%,英国 -3.5%,

  意大利 0.2%,中国 7.5%。

  注意:在同一个问题中,分别用正数与负数表示的量具有相反的意义。[投影3]例2 “牛牛”饮料公司的一种瓶装饮料外包装上有“500±30(mL)”字样,请问“500±30(mL)”是什么含义?质检局对该产品抽查5瓶,容量分别为503mL,511mL,489mL,473mL,527mL ,问抽查产品的容量是否合格?

  分析:“+30”是什么意思?“-30”是什么意思?

  解:“500±30(mL)”表示实际容量比500mL最多多30mL,最少少30mL,即在470~530之间。 抽查产品的容量都在470~530之间,所以都合格。

  六、巩固练习

  [投影]补充题:某药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适。

  七、课堂小结

  1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。

  2、正数和负数起源于表示两种相反意义的量。

  3、正、负数在生产、生活和科研中有着广泛的应用。

正数与负数教案9

  教学目标:

  1、在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题和现象。

  2、在具体的情境中,认、读、写负数,同时渗透“对应”和“集合”的数学思想。

  3、培养学生获取信息,并进行分析的意识和能力。

  4、进行德育渗透,培养学生科学精神和民族自豪感。

  教学重点:

  了解负数的意义和负数在生活中的应用。

  教学难点:

  理解负数的意义。

  教学用具:

  电脑课件、实物投影仪、温度计。

  教学过程:

  一、创设情境,导入新知。

  同学们,这节课老师和你们一起上数学,数学和什么打交道最多?数学课离不开数,数与我们的日常生活联系得也非常密切。(边说边板书:数 数)下面老师要说些数据,请你们认真听,当一名小记录员,看谁能经过思考,将老师所说的数据信息,用你喜欢的方式准确地记录下来。能开始吗?

  1、中国队参加足球比赛,上半场进了2个球,下半场输了2个球。

  2、寒假开学,我校四年级转进学生7人,五年级转出学生3人。

  3、小刚的妈妈卖服装,今年三月份赚了900元,四月份赔了100元。

  二、探讨交流,感知新知。

  (一)交流记录的数据信息,初步感受正数和负数是表示相反意义的两个量。

  1、展示同学们的记录单(随机进行)

  根据同学们的记录情况,启发同学进行分析,相互之间交流看法。

  谁写完了,举起来让我看看(教师桌间巡视,收集相关信息。)

  足球比赛

  转学情况

  账目结算

  上半场 2 四年级 7 三月份 900 下半场

  2五年级 3 四月份 100

  刚才老师收集了几个同学的记录单,请你们看看,有什么想法?(不能准确地表达老师所说的意思)

  看来用我们已有的知识,来记录一些数据,有时候是说明不了问题的。刚才老师说的这些信息进球和输球;转进和转出;赚和赔都是相对应的。(渗透对应的数学思想)表示相反意义的两个量。这张记录单,只把数据记了下来,没有说明情况。请看这张记录单,你觉得怎样?(请学生们交流看法)

  足球比赛

  转学情况

  账目结算

  上半场 进2个 四年级 进7人 三月份 900 下半场 输2个 五年级 出3人 四月份 100

  这位同学能把前两条信息准确的记录下来,用的是什么方法?(汉字)这种方法怎么样?(麻烦)

  还有不同的记录方法吗?(请同学进一步交流自己的想法,教师分别展示学生不同的记录方法。)

  2、小结:你用的符号意思你明白,他用的符号意思他明白,那我们要想让大家都明白,就应该用共同的符号。(视课堂学习的情况而定,如果有用“+”、“-”就来展示一下,让同学们了解。)

  3、统一记录的方法和形式看,咱们同学还有用这种方法记录的:

  足球比赛

  转学情况

  账目结算

  上半场 +2 四年级 +7 三月份 +900 下半场 -2 五年级 -3 四月份 -100

  谁说说用这种方法记录好在哪儿?(能准确表达老师要说的意思,简单)

  小结:这种记录方法中所用的'这两个符号“+”、“-”是数学符号,(教师边说边板书:+、-)。数学符号是数学的语言,是帮助大家进行交流的。以前我们见过它,想想在哪儿见得最多?现在它们可有新的名字啦,我们管它“+”叫正号(师边说边板书:正号),跟我读:正号。它“-”叫负号(板书:负号)读:负号,人们在数学中就用这种符号来区别意义相反的量。

  (二)认识正数和负数,读、写正、负数。

  1、认、读正、负数。

  像记录单中这个数+2,我们就读正2(板书:+2)跟我读:正2;它“-2”,读作:负2(板书:-2)跟我读:负2。

  用刚才的方法,谁能读出后面的4个数?(指名读,随着生读师板书:+7,-3,+900,-100)

  小结:刚才我们用正号和负号能清楚地记录数学信息,从中我们也认识了正数和负数(师板书:正、负)。

  练一练:谁能说出几个正数和负数,说的完吗?正、负数是无穷多的。(渗透集合思想)用一个符号表示……(师同时板书)

  课件出示:-100,+68,-1.5,+,-,36

  请同学们开火车读,其他同学判断。

  讨论36是什么数,介绍为了简便起见,正号可以省略不写。

  猜猜看,36是正数还是负数?

  告诉你,像这样的数是正数,为了简便起见,正号可以省略。同学们想一想,负号可不可以省略,为什么?(区分不开)

  在学生充分发表自己的意见后,教师归纳:为了正确的区分正数和负数,负号不能省略,正号可以省略。我们已经初步的认识了正数和负数,下面老师考考大家,行吗?

  2、写数,认识“0”

  课件出示练习

  做完后同学交流结果。

  谁想把你做的结果跟大家交流一下。(学生说,教师同时用课件演示。)

  重点讨论“0”的问题,让学生初步感知大于0的数是正数,小于0的数是负数,0既不是正数,也不是负数。

  3、介绍负数的历史

  通过以上的学习,大家已经认识了负数这个新朋友,其实对负数的认识,我们祖国有着悠久的历史,古代人在很早以前就想出了用不同方法记录正数和负数,大家想知道吗?请看大屏幕。

  ⑴、出示课件,请同学读上面的信息,其他同学思考:你从中知道了什么?

  听了他们的介绍,你们想说些什么吗?

  ⑵、学生谈感受

  使学生了解我国在很早以前就有使用负数的历史,从而培养学生的科学精神和民族自豪感。(进行德育渗透)

  (三)寻找生活中的负数,进一步理解负数的意义。

  1、从天气预报入手,感知负数的意义。

  负数在我们生活中有很多的应用。请看大屏幕,这是20xx年11月3日北京市气温分布图。

  出示课件:找同学读一读。

  谁能读出上面的气温?

  区别-1℃和1℃所表示的意义,感知0是正、负数的分界点。

  这个气温分布图上,有这样两个温度:-1℃和1℃,谁能说说它们有什么不同?为什么?(-1℃是零下,1℃是零上)(-1℃比1℃要冷)

  小结:在通常情况下,把水结冰的温度定为0℃,把水沸腾时的温度定为100℃,100℃在0℃以上,可用正数表示,0℃以下的温度可用负数表示。由此可见,0℃很关键。

  2、在温度计上找温度,体会水银柱越往上升温度越高,水银柱下降温度降低,0℃以上为正数,0℃以下为负数。

  把你的温度计准备好,请你在温度计上表示出10摄氏度。(展示同学们的温度计,有两种可能,一种是10℃,另一种是-10℃)从温度计中更能看出0℃的重要性了。

  (四)用直线上的点表示正、负数,并总结规律。

  正数和负数还可以用直线上的点表示。(边说边演示)请看大屏幕,直线上有无数个点,我们选择其中的一个点为0点,每小格代表单位1,如果我要写正数,在0的哪边写?还可以写好些,正数都在0的右边,那0的左边就是(负数了)。

  负数 正数

  越来越大

  -3 -2 -1 0 1 2 3

  越来越小

  请你观察这个图,从左向右看,你发现了什么?(从左向右数越来越大)还可以从哪边看?你又发现了什么规律?(从右向左数越来越小)从这个图中你能看出0是什么数吗?(板书:0)(0既不是正数,也不是负数)0和正、负数之间有怎样的关系?(0小于所有的正数,大于所有的负数)可以用这个符号“<”把它们连接起来吗?(同时板书:“<”)

  三、走进生活,巩固新知。

  负数在我们的生活中随处可见。

  1、电梯中的负数(出示课件)

  下面请同学看大屏幕,叔叔应该按哪个键?阿姨应该按哪个键?

  2、存折上的负数。

  3、方向问题(出示课件)

  我们继续往下看,默读题目,谁读懂了,谁能填空?

  4、课本P73例4(出示课件)

  请看这幅图,我们以海平面为分界线,图中高于海平面有两点,低于海平面有哪几点?用正、负数读出图中的数据。

  5、刘翔跨栏的画面(出示课件)

  认识他吗?请你默读信息,思考当时赛场风速每秒-0.4米是什么意思?谁能解释一下?

  四、归纳总结,质疑问难。

  可见,正、负数在我们的生活中应用得很广泛,以后大家千万要留心身边的生活,在我们的日常生活中,处处都有要学的数学知识。

  时间过得真快,马上就要下课了,你们过得高兴吗?说说有什么收获?

  看着你们举起的手,大家都有所收获。

  哪儿不明白?

  我们不仅学会了知识,还学会了思考问题。下节课我们一起讨论解决大家提出的问题。

  五、留心生活,完成作业。

  作业:1、完成自主丛书P43 1、2、3题;

  2、课后思考:还有哪些事物可以用正、负数来表示。

  板书:

  负数 < 0 < 正数

  -2 +2 +正号

  -3 +7 -负号

  -100 +900

正数与负数教案10

  教学目标

  1、通过对零的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量;

  2、进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

  3、体验数学发展的一个重要原因是生活实际的需要;激发学生学习数学的兴趣。

  重点深化对正负数概念的理解。

  难点正确理解和表示指定方向变化的量,表示相反意义的`量。

  教学过程

  一、创设情景

  通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分 别表示它们。

  温度计上的-2,0,3分别表示是么意义?

  二、自主探究

  (1)、一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

  (2)、20xx年下列国家的商品进出口总额比上一年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%.写出这些国家20xx年商品进出口总额的增长率。

正数与负数教案11

  一、素质教育目标

  (一)知识才学点

  1.理解有理数的意义。

  2.能把给出的有理数按要求分类。

  3.了解数0在有理数分类中的作用。

  (二)能力训练点

  培养学生树立对数分类讨论的观点和能正确地进行分类的能力。

  (三)德育渗透点

  通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育。

  (四)美育渗透点

  通过有理数的分类,给学对称美的享受

  二、学法引导

  1.教学方法:启发引导,充分体现学生为主体,注重学生参与意识。

  2.学生学法:识记→练习巩固。

  三、重点、难点、疑点及解决办法

  1.重点:有理数包括哪些数。

  2.难点:有理数的分类。

  3.疑点:明确有理数分类标准。

  四、教具学具准备

  投影仪、自制胶片。

  五、师生互动活动设计

  教师用投影出示练习题,学生讨论解决,教师引导学生对有理数进行分类,学生以多种形式完成训练题。

  六、教学步骤

  (一)复习导入

  (出示投影1)

  1.把下列各数填入相应的大括号内:

  +6,3.8,0,-4,-6.2,-3.8,正数集合

  负数集合

  2.填空:

  (1)若下降5记作-5,那么上升8记作__________________,不升不降记作_____________________.

  (2)如果规定+20表示收入20元,那么-10元表示______________.

  (3)如果由地向南走3千米用3千米表示,那么-5千米表示____________________,在地不动记作__________________.

  【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

  师:在小学大家学过1,2,3,4……这是什么数呢?

  生:自然数。

  师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?

  生:负数。

  师:具体叫什么负数呢?

  师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

  【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

  (二)探索新知,讲授新课

  1.分类数的名称

  1,2,3,4……叫做正整数;

  -1,-2,-3,-4……叫做负整数。

  0叫做零。

  ,(即)……叫做正分数;

  ,(即)……叫做负分数;

  正整数、负整数和零统称为整数。

  正分数和负分数统称为分数。

  整数和分数统称有理数。即

  【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

  提出问题:巩固概念

  (出示投影2)

  (1)0是整数吗?是正数吗?是有理数吗?

  (2)-5是整数吗?是负数吗?是有理数吗?

  (3)自然数是整数吗?是正数吗?是有理数吗?

  【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。

  注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

  2.有理数的分类

  为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

  (1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类

  (2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

  尝试反馈,巩固练习

  (出示投影3)

  下列有理数中:-7,10.1,89,0,-0.67,.

  哪些是整数?哪些是分数?哪些是正数?哪些是负数?

  学生思考,然后找同学逐一回答。其他同学准备补充或纠正。

  【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的`能力。

  3.数的集合

  我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

  (三)变式训练,培养能力

  (出示投影4)

  (1)把有理数6.4,-9,+10,-0.021,-1,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

  正整数集合,负整数集合

  正分数集合,负分数集合

  (2)把下列有理数:-3,+8,+0.1,0,-10,5,-0.7填入相应的集合:

  整数集合,分数集合

  正数集合,负数集合

  【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正。从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

  (四)归纳小结

  师:今天我们一起学习了哪些内容?

  由学生自己小结,然后教师再总结:

  今天我们一起学习了有理数的定义和两种分类方法。要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

  【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

  (五)反馈检测

  (出示投影5)

  (1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________.

  (2)把下列各数填入相应集合的持号内:

  -3,4,-0.5,0,8.6,-7

  整数集合,分数集合

  正有理数集合,负分数集合

  (4)选择题:-100不是()

  A.有理数;B.自然数;C.整数;D.负有理数。

  以小组为单位计分,积分的组为优胜组。

  【教法说明】通过反馈检测,既使学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

  七、随堂练习

  1.判断题

  (1)整数又叫自然数。

  (2)正数和负数统称为有理数

  (3)向东走-20米,就是向西走20米()

  (4)温度下降-2℃,是零上2℃()

  (5)非负数就是正数,非正数就是负数

  2.在下列适当的空格里打上“√”号

  有理数

  整数

  分数

  正整数

  负分数

  自然数

  2

  -3.14

  0

  3.把下列各数分别填在相应的大括号里

  1.8,-42,+0.01,0,-3.1415926,1

  整数集合

  分数集合

  正数集合

  负数集合

  自然数集合

  非负数集合

  八、布置作业

  (一)必做题:课本第50页3、4.

  (二)思考题:把下列各数填在相应的集合中

  3.14,-5,0,89,-2.67,+1001

  有理数集合

  非负有理数集合

  负有理数集合

  九、板书设计

  随堂练习答案

  1.× × √ × ×

  2.略

  3.整数集体;分数集合;正数集合;负数集合;自然数集合;非负数集合.

  作业答案

  (一)必做题:课本第50页

  3.正数负数:

  4.正整数集合负整数集合正分数集合负分数集合

  (二)思考题

  有理数集合

  非负有理数集合

  负有理数集合

正数与负数教案12

  《1.1正数和负数》教学设计

  教学目标

  1. 通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示相反意义的量(规定了向指定方向变化的量);

  2. 进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力;

  3. 激发学生学习数学的兴趣.

  [教学重点与难点]

  重点:深化对正负数概念的理解.

  难点:正确理解和表示向指定方向变化的量

  《1.1正数和负数》同步练习

  1、下列说法正确的是( )

  A、零 是正数不是负数 B、零既不是正数也不是负数

  C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数

  2、向东行进-30米表示的意义是( )

  A、向东行进30米 B、向东行进-30米

  C、向西行进30米 D、向西行进-30米

  3、零上13℃记作 +13℃,零下2℃可记作( )

  A、2 B、-2 C、2℃ D、-2℃

  4、某市20 15年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高 气温比 最低气温高( )

  A、-10℃ B、-6℃ C、6℃ D、10℃

  5、 中,正数有 ,负数有 .

  6、如 果水位升高5m时水位变化记作+5m,那么水位下降3m时水位变化记作 m,

  水位不升不降时水位变化记作 m.

  7、在同一个问题中,分别用正数与负数表示的量具有 的意义.

  8、甲、乙两人同时从A地出发, 如果向南走48m,记作+48m,则乙向北走32m,记为 ,

  这时甲乙 两人相距 m. .

  9、某种药品的'说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适.

  10、20xx年我国全年平均降水量比 上年减少24㎜,20xx年比上年增长8㎜,20xx年比上年减少20㎜。用正数和负数表示这三年我国全年平均降水量比上年的增长量.

  11、如果把一个物体向右移动5m记作移动-5m,那么这个物体又移动+5m是什么 意思?这时物体离它两次移动前的位置多 远?

  12、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表 示90分,正数表示超过90分,则五名 同学的平均成绩为多少分?

  13、某地一天中午12时的气温是7℃,过5小时气温下降了4℃ ,又过7小时气温又下降了4℃,第二天0时的气温是多少?

  《1.1正数和负数》同步练习含答案

  19.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名 女学生成绩如下:1、4、0、8、6、8、0、6、-5、-1.

  (1)这10名女生的达标率为多少?

  (2)没达标的同学做了几个仰卧起坐?

  解:(1)这10名女生的达标率为8÷10 ×100%=80%.

  (2)没达标的同学做仰卧起坐的个数分别是23个和27个.

正数与负数教案13

  学习目标

  1、了解负数是从实际需要中产生 的;

  2、能判断一个数是正数还是负数,理解数0表示的量的意义;

  3、会用正负数表示实际问题中具有相反意义的量.

  重点难点

  重点:正、负数的概念,具有相反意义的量

  难点:理解负数的概念和数0表示的量的意义

  教学流程

  师生活动 时间 复备标注

  一、导入新课

  我先向同学们做个自我介绍,我姓 ,大家可 以叫我 老师,身高 米,体重 千克,今年 岁,教 龄是年龄的 ,我将和同学们一起度过三年的.初中学习生活.

  老师刚才的介绍中出现了一些数,它们是些什么数呢?

  [投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……等整数;为了表示“没有”、“空位”引进了数0;测量和分配有时不能得到整数的结果,为此产生了分数和小数. 所以,数产生于人们实际生产和生活的 需要.

  在生活中,仅有整数和分数够用了吗?

  二、新授

  1、自学章前图、第2 页,回答下列问题

  数-3,3,2,-2,0,1.8%, -2.7%,这些数中 ,哪 些数与以前学习的数不同?

  什么是正数,什么是负数?

  归纳小结:像3、2、2.7%这样大于零的数叫做正数,像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数.根据需要,有时在正数前面也加上“+”(正)号,例如,+2、+0.5、+ 1/3,…,就是2、0.5、1/3,….

  这样,一个数就由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值.

  如数-3.2的符号是“一”号,绝对值是3.2,数5的符号是“+”号,绝对值是5.

  2、自学第23页,回答下列问题

  大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么 0是什么数呢?

  0有什么意义?

  归纳小结:数0既不是正数,也不是负数,它是正数和负数的分界.

  0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量.

  3、用正负数表示具有相反意义的量:自学课本34页

  有哪些相反意义的量?

  请举出你所知道的相反意义的量?

  “相反意义的量”有什么特征?

  归纳小结:一是意义相反,二是有数量,而且是同类量.

  完成3页练习

  4、例题

  自学例题,完成 归纳。寻找问题。

  完成4页练习

  三、课堂达标练习

  课本第5页练习1、2、3、4、7、8.

  四、课堂小结

  1、到目前为止,我们学习的数有哪几种?

  2、什么是正数、负数?零仅仅表示“没有”吗?

  3、正数和负数起源于表示两种相反意义的量,后来正数和负数在许多方面被广泛地应用. 明确目标

正数与负数教案14

  教学目标

  一、知识与技能

  能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。

  二、过程与方法

  借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

  三、情感态度与价值观

  培养学生积极思考,合作交流的意识和能力。

  教学重、难点与关键

  1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。

  2.难点:正确理解负数的概念。

  3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。

  教具准备

  投影仪。

  教学过程

  课堂引入

  我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,为了表示没有物体、空位引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

  在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。

  讲授新课

  (1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号-的数)叫做负数。而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上+(正)号,例如,+3,+2,+0.5,+,就是3,2,0.5,一个数前面的+、-号叫做它的符号,这种符号叫做性质符号。

  (2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。

  (3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。

  (4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。

  用正负数表示具有相反意义的量

  (5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的.海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额。

  (6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义。

  (7)、你能再举一些用正负数表示数量的实际例子吗?

  (8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。

  巩固练习

  课本第3页,练习1.2.3.4题。

  课堂小结

  为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上-号,就是负数,但不能说:带正号的数是正数,带负号的数是负数,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上-号后所表示的数反而是正数了,另外应注意0既不是正数,也不是负数。

  作业布置

  课本第5页习题1.1复习巩固第1.2.3题。

正数与负数教案15

  设计理念:

  《数学课程标准》指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。本节课重在让学生在自主探究、合作交流学习过程中去发现、感悟正、负数的秘密和魅力,体验学习数学的乐趣,感受到学习数学知识的价值。

  教学内容:北师大课程标准试验教科书第七册第89----90页。

  教材分析:

  很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的生活基础。因此《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。本节内容意在让学生在熟悉的生活情境中初步认识负数,感受学习的内容就在我们的身边,拓展对数概念的认识。了解负数的意义,会用负数表示一些日常生活中的问题,为第三学段进一步理解有理数的意义和运算打下良好的基础。

  学情分析:

  “负数”这一概念虽然是第一次出现且比较抽象,但学生对此并不是一无所知。本班学生对于正、负数已经有了一定的生活经验。能结合生活情境初步了解负数的意义,基本能读、写负数。

  教学目标:

  1、知识与技能:在熟悉的生活情境中,了解负数的意义,学会用正、负数表示日常生活中具有相反意义的量;会正确地读、写负数。

  2、过程与方法:使学生在熟悉的生活情境中,以自主探究、自主合作、自主评价等自我学习方式,让学生在交流中进一步完善对数的认识。经历数学化、符号化的过程,体会负数产生的必要性。

  3、情感、态度和价值观:让学生感受正、负数和生活的密切联系,享受自主性、创造性学习的乐趣。

  教学重点:了解正、负数的意义,应用正、负数表示生活中具有相反意义的量。

  教学难点:了解负数的意义及0的内涵。

  教学方式自主探究、合作分享。

  教、学准备:师:卡片,小黑板

  生:课前自主预习并收集生活中正、负数的数学信息。

  教学过程:

  一、利用旧知,创设情境,自探新知(让学生初步自主探究并分享正、负数的秘密)

  1、回忆前面所学内容温度计绘制数轴

  师:同学们,我们昨天学习、了解了温度,在温度的学习中我们知道了0是什么?

  生:0是零上温度和零下温度的分界点。

  师:那么零上温度和零下温度是怎么记录的?请举例(同时老师在黑板上画一条直线,把学生举的例子在线上表示)

  生1:零上9度记作+9℃,零下5度记作—5℃。

  生2:零上3度记作+3℃,零下8度记作—8℃。

  ......

  师:零上温度和零下温度表示的是一组什么样的量?(借助数轴)

  生:是一组相反意义的量

  2、明确概念,了解正、负数的读法和写法。

  师:0左边的数和右边的数还有其他的读法吗?

  生1:左边的数读加几,右边的读减几(自定向)

  生2:不对,应该读正几,负几。

  追问:为什么读作正几、负几。

  生1:我是在自学过程中发现的。

  生2:我是在在昨天回家汇报学习情况时,妈妈告诉我的。

  (师顺势讲解:加号和减号和过去的意义不同,加号叫做正号,减号叫做负号。)

  〈板书:+:正号—:负号〉

  师:大家一起来读一读。(+9,+3,—5,—8)

  师:像左边这样的数我们叫做什么?(正数)〈左边板书:正数〉

  像右边这样的数我们叫什么?(负数)〈右边板书:负数〉

  〈师板书名称:正数负数〉

  师:那么0呢?

  生:0既不是正数,也不是负数;

  师:那么0是正、负数的。

  生齐答:分界点。

  <师在0的下面板书:分界点>

  追问:我们以前学习的0表示什么?

  生1:表示没有。

  生2:表示起点。

  练习:

  抢答:《卡片》+6.8、—1.5、+56、—100是正数还是负数。

  抢读:《卡片》—12、12;+36、36

  3、自主探究,发现交流正、负数的秘密。

  (1)师:同学们请仔细观察这条数轴,然后小组内交流你发现了什么?

  〈留足时间让学生自主在数轴上去发现:正数、负数也是表示相反意义的量;正数、负数是无限的;所有的正数比0大,所有的负数比0小;正、负数大小的.比较〉

  生:独立观察、思考后交流各自的发现。(教师走进学生倾听学生的发现)

  (2)汇报交流内容

  师:下面请各小组交流你们的精彩发现。

  生1:我们组发现了正数有无穷多个、负数是也一样;

  生2:我们组发现了正数比0大,负数比0小。

  生3:我们组发现了越往左边的正数越大,越往右边的负数越小。

  师:引导学生小结《适当板书》

  同学们发现了正负数中这么多的秘密:0既不是。(正数),也不是。(负数);正数、负数是。(无限的);所有的正数比0...(大),所有的负数比0...(小);正、负数大小的比较。

  (3)巩固练习《小黑板出示》

  1、填空

  (1)比0大的数用()表示,比0小的数用()表示。

  (2)0既不是()数,也不是()数。

  2、判断

  (1)+0为正数,—0为负数。 ()

  (2)8读作负八。 ()

  (3)+15可以写作15。 ()

  (4)—2,—5,—10,—100,都是负数。()

  (5)0表示什么也没有,0比负数小。 ()

  (6)+5和—5表示的意思是不一样。 ()

  3、在○里填上“>”“<”或“=”。

  0○—3 0○—6 —3○—2

  8○—80 9○—9 +7○7

  二、结合生活、交流分享、运用新知(让学生分享正、负数在生活中的广泛运用。)

  师:那负数在生活中有什么应用呢?请把你课前收集到的信息进行最简洁的记录并交流。

  1、整理自己收集到的信息

  2、小组交流

  3、全班交流

  生1:我找到的是股市行情:星期一是2236.41点,星期二2201.51点,跌了34.9点,星期三是2216.81点,涨了15.3点。我把跌了34.9点记作-34.9点,把涨了15.3点记作+15.3点。

  生2:我爸爸单位9月15日买了20个灯泡,这几天用坏了6个灯泡。记录成爸爸单位9月15日+20个,这几天—6个。

  生3:我听写时写对了5个,写错了5个。记录成听写时,+5个,—5个。

  生4:我在妈妈的工资本上发现每月5号好发1560元,妈妈每次取钱后工资本上记录的是—200、—100

  ......

  师:同学们表现真出色,收集了这么的信息,原来在生活中有许多事情我们都在运用正负数作记录。这样做有什么好处。

  生1:可以节约记录时间。

  生2:可以让别人快速明白。

  <小黑板出示:机动题根据时间多少做>

  师:对,省时、省力。老师也收集了些信息想与大家一起分享。请完成小黑板上的内容:

  1、电梯中的正、负数。

  叔叔上五楼开会,阿姨到地下二楼取车,应按哪两个键?

  2、海拔高度中的正、负数。

  珠穆朗玛峰比海平面高出8844.43米,记作“+8844.43米”;

  吐鲁番盆地比海平面低155米,记作_____米。

  3、方向中的正负数。

  下图中,每个小格代表1米,小华开始的位置在0处。

  (1)小华从0点向东行5米,表示为+5,那么从0点向西行3米,表示为()米;(2)如果小华的位置是7米,说明他是向()行()米。(3)如果小华的位置是-8米,说明他是向()行()米。

  4、运动中的正负数

  刘翔在第十届世界田径锦标赛半决赛中,110米栏的成绩是13.42秒,当时赛场风速为每秒-0.4米。(1)小组讨论:风速怎么还有负的?(2)反馈并组织学生进行简要表演。

  三、课堂小结:

  在今天的课堂上,我们只是初步的认识了正、负数,〈板书课题:正负数〉其实负数在我们生活中还有着广泛的应用。希望同学们能用数学的眼光观察生活、走进生活,去发现更多更有趣的知识。

【正数与负数教案】相关文章:

正数与负数教案10-06

【精华】《正数和负数教案》四篇07-01

正数和负数教案人教版精编12-27

认识负数教案07-31

《生活中的负数》说课稿11-18

高中教案教案03-05

关于教案模板 教案模板教案10-20

小班教案《小熊》教案11-19

(实用)高中教案教案01-21