- 相关推荐
二元一次方程与一次函数的教案范文(精选10篇)
作为一名无私奉献的老师,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?以下是小编整理的二元一次方程与一次函数的教案范文(精选10篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程与一次函数的教案 1
教学目标
1、知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2、情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作——————自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一、 故事引入
迪卡儿的'故事——————蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二、 尝试探疑
1、Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?
以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。
然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x—2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组
y=x+1 的解。
Y=4x—2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三、 方程与函数关系的应用
解方程组 x—2y=—2
2x—y=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1、把两个方程都化成函数表达式的形式。
2、画出两个函数的图象。
3、画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2.1 y=2.1
y=1.9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四、 引申
方程组 x+y=2
x+y=5 解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五、 课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六、 作业
1、用作图象法解方程组2x+y=4
2x—3y=12
2、如图,直线L、L相交于点 A,试求出A点坐标。
二元一次方程与一次函数的教案 2
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
三、目标分析
1.教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组的解与图像之间的关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的.解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节 作业布置
习题7.7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
二元一次方程与一次函数的教案 3
教学目标:
1、理解二元一次方程的概念,掌握其一般形式。
2、掌握二元一次方程组的解法,特别是代入法和消元法。
3、理解二元一次方程与一次函数之间的关系,能够将二元一次方程转化为一次函数图像进行求解。
4、培养学生的抽象思维能力和逻辑推理能力,以及运用数学知识解决实际问题的能力。
教学重点:
二元一次方程组的解法。
二元一次方程与一次函数的关系。
教学难点:
如何将二元一次方程转化为一次函数图像进行求解。
灵活运用不同方法解决二元一次方程组。
教学过程:
一、导入新课
通过复习一元一次方程和一次函数的概念,引出二元一次方程和二元一次方程组的概念。提问学生:如果一个问题涉及到两个未知数,并且这两个未知数的次数都是1,那么我们应该如何表示和求解这个问题呢?
二、讲授新课
1、二元一次方程的概念
定义:含有两个未知数,并且所含未知数的项的'次数都是1的整式方程叫做二元一次方程。
一般形式:ax + by = c(其中a、b、c为常数,且a、b不同时为零)。
2、二元一次方程组的解法
介绍两种常用的解法:代入法和消元法。
通过例题演示这两种解法的具体步骤和注意事项。
3、二元一次方程与一次函数的关系
讲解如何将二元一次方程转化为一次函数图像进行求解。
举例说明:给定二元一次方程x + 2y = 6,可以将其转化为一次函数y = — + 3,并在坐标系中画出该函数的图像,从而找到方程的解。
三、巩固练习
1、给出几个二元一次方程,让学生判断其是否为二元一次方程。
2、给出几个二元一次方程组,让学生选择适当的解法进行求解。
3、给出一些实际问题,让学生将其转化为二元一次方程或二元一次方程组进行求解。
四、课堂小结
1、 总结二元一次方程和二元一次方程组的概念、解法以及它们与一次函数的关系。
2、强调在解决实际问题时,要灵活运用所学知识,选择适当的方法进行求解。
五、布置作业
1、完成课后习题中关于二元一次方程和二元一次方程组的题目。
2、预习下一节内容:三元一次方程组的解法。
教学反思:
在教学过程中,要注重培养学生的抽象思维能力和逻辑推理能力。通过例题和练习,让学生逐步掌握二元一次方程组的解法以及它们与一次函数的关系。同时,要关注学生的学习情况,及时给予指导和帮助,确保每位学生都能跟上教学进度。
二元一次方程与一次函数的教案 4
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的'交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图] 学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。
四、教学设计反思
1、贯穿一个原则以学生为主体的原则
2、突出一个思想数形结合的思想
3、体现一个价值数学建模的价值
4、渗透一个意识应用数学的意识
二元一次方程与一次函数的教案 5
教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
教学过程
(一)引入新课
多媒体播放一段发生在电信公司里的情景:一顾客准备办理上网业务,发现有两种收费方式:方式A以每分钟0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分钟0.05元的价格按上网时间计费。顾客说他每月上网的费用按这两种收费方式计算都是一样多。求这位顾客打算每月上网多长时间?多少费用?
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程 或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。
(二)进行新课
1、探究一次函数与二元一次方程的关系
填空:二元一次方程 可以转化为 ________。
思考:(1)直线 上任意一点 一定是方程 的解吗?(2)是否任意的二元一次方程都可以转化为这种一次函数的形式?
(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?
2、探究一次函数图像与二元一次方程组的关系
(1)在同一坐标系中画出一次函数 和 的图象,观察两直线的交点坐标是否是方程组 的解?并探索:是否任意两个一次函数的交点坐标都是它们所对应的二元一次方程组的解?
此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的`坐标。
(2)当自变量 取何值时,函数 与 的值相等?这个函数值是什么?这一问题与解方程组 是同一问题吗?
进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。
3、列一元二次不等式
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基费20元外再以每分0 .05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
解法1:设上网时间为 分,若按方式A则收 元;若按方式B则收 元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标 ,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式A省钱;当上网时间等于400分时,选择方式A、B没有区别;当上网时间多于400分时,选择方式B省钱。
解法2:设上网时间为 分,方式B与方式A两种计费的差额为 元,得到一次函数: ,即 ,然后画出函数的图象,计算出直线与 轴的交点坐标,类似地用点位置的高低直观地找到答案。
注意:所画的函数图象都是射线。
4、习题
(1)、以方程 的解为坐标的所有点都在一次函数 _____的图象上。
(2)、方程组 的解是________,由此可知,一次函数 与 的图象必有一个交点,且交点坐标是________。
5、旅游问题
古城荆州历史悠久,文化灿烂。
今年,大型历史剧《万历首辅张居正》在荆州封镜后,来荆州的游客更是络绎不绝。据悉,张居正纪念馆门票标价20元/张,近期正在进行优惠活动,购买时有两种方式:方式A是团队中每位游客按8折购买;方式B是团队中除5张按标价购买外,其余按7折购买。如果你是团队的负责人,你会如何选择购买方式使整个团队更合算?
二元一次方程与一次函数的教案 6
教学目标:
1、使学生理解并掌握二元一次方程的概念及其解法。
2、帮助学生认识到二元一次方程与一次函数之间的内在联系。
3、培养学生运用二元一次方程和一次函数解决实际问题的能力。
4、提升学生的逻辑思维能力和数学建模能力。
教学重难点:
重点:二元一次方程的解法及与一次函数的转换。
难点:理解二元一次方程解集与一次函数图像之间的关系。
教学准备:
教具:黑板、白板笔、多媒体设备、教学PPT。
学具:笔记本、笔、计算器(可选)。
教学过程:
一、导入新课
情境引入:通过生活实例(如购物问题、行程问题等)设置情境,引导学生思考如何建立数学模型描述这些实际问题。
提出问题:根据情境,引导学生提出可以用二元一次方程解决的问题,并尝试用自然语言描述问题中的关系。
二、新知讲解
概念讲解:
定义二元一次方程:介绍二元一次方程的`基本形式ax + by = c(a,b,c为常数,a,b不同时为零)。
讲解二元一次方程的解法:重点介绍代入法和消元法,并通过例题示范。
一次函数回顾:
回顾一次函数y = mx + b的定义和性质。
建立联系:
引导学生发现,给定一个二元一次方程,可以通过令y = ax + b(其中b需通过方程变形得到)的方式,将其转化为一次函数的形式,反之亦然。
讨论二元一次方程的解集与一次函数图像(直线)上的点之间的关系。
三、实践探究
1、例题解析:
通过几道典型例题,展示如何将实际问题转化为二元一次方程,并通过解方程找到答案。
强调解方程过程中如何有效利用一次函数的图像辅助理解和求解。
2、小组活动:
分组让学生自行设计或选择包含二元一次方程的实际问题,尝试建立方程并求解,最后分享讨论。
四、拓展延伸
1、应用讨论:
讨论二元一次方程和一次函数在其他学科或现实生活中的应用实例,如经济学、物理学等。
2、数学文化:
简要介绍二元一次方程和一次函数的历史背景,增加学生的数学文化素养。
五、总结反馈
1、课堂总结:
回顾本节课的主要内容,强调二元一次方程与一次函数之间的紧密联系。
2、学生反馈:
鼓励学生提出疑问,进行解答;收集学生对本节课的反馈,以便后续教学调整。
六、作业布置
完成课后习题,包括几道将实际问题转化为二元一次方程并求解的题目。
探究题:寻找一个日常生活中的问题,尝试建立二元一次方程模型并求解,撰写简短报告。
教学反思:
课后,教师应反思教学过程中的亮点与不足,特别是学生对二元一次方程与一次函数关联的理解程度,以及教学活动的效果,为后续教学提供改进方向。
二元一次方程与一次函数的教案 7
教学目标:
知识与技能:理解二元一次方程和一次函数的关系;掌握通过一次函数图象求解二元一次方程组的方法。
过程与方法:通过自主探索与合作交流,揭示方程与图象之间的对应关系,培养学生的数形结合意识和能力。
情感态度价值观:激发学生的学习兴趣,体验数学活动的探索与创造过程。
教学重点:
二元一次方程和一次函数的关系。
能根据一次函数的图象求二元一次方程组的近似解。
教学难点:
方程和函数之间的对应关系,以及数形结合的意识和能力。
教学过程:
一、故事引入
讲述法国数学家迪卡儿通过观察蜘蛛爬行受到启发,创建直角坐标系的故事。引导学生理解坐标系在建立方程与图形联系中的重要作用。
二、新知探究
提出问题:观察函数y=x+1,思考它是否也可以看作一个二元一次方程?如何理解这种关系?
学生自主探索:通过计算和画图,验证函数y=x+1上的任意一点的坐标是否满足方程x-y=-1,以及以方程x-y=-1的解为坐标的点是否在函数y=x+1的图象上。
得出结论:函数y=x+1与方程x-y=-1有密切的联系,它们的图象是相同的。
引申探究:在同一坐标系下画出y=x+1与y=4x-2的图象,观察它们的.交点坐标,并思考这个交点坐标与方程组y=x+1和y=4x-2的解有什么关系。
学生交流讨论,得出结论:两个函数的交点坐标就是方程组的解。
三、应用实践
给出方程组x-2y=-2和2x-y=2,鼓励学生尝试用图象法求解。
学生动手画图,找出交点坐标,即为方程组的解。
讨论图象法求解的近似性和局限性。
四、课堂小结
本节课我们通过操作和思考,揭示了二元一次方程和一次函数图象之间的对应关系,学会了用图象法求解二元一次方程组。同时,我们也培养了数形结合的意识和能力。
五、作业布置
用作图象法解方程组2x+y=4和2x-3y=12。
直线L1和L2相交于点A,试求出A点坐标。
二元一次方程与一次函数的教案 8
教学目标:
知识与技能:掌握二元一次方程组的图象解法,能熟练通过画图求解方程组。
过程与方法:通过画图实践,培养学生的动手能力和数形结合思维。
情感态度价值观:激发学生的学习兴趣,培养学生的创新意识和团队合作精神。
教学重点:
二元一次方程组的图象解法。
教学难点:
如何准确画出函数图象并找到交点坐标。
教学过程:
一、复习引入
回顾二元一次方程和一次函数的关系,以及如何通过一次函数图象求解单个方程。
二、新知讲授
引出课题:当我们面对一个二元一次方程组时,如何利用图象法求解呢?
讲解方法:首先,将方程组中的每个方程转化为一次函数表达式;然后,在同一坐标系下画出这两个函数的图象;最后,找出它们的交点坐标,即为方程组的解。
三、例题示范
给出例题:解方程组x+y=5和2x-y=1。
学生尝试将方程转化为函数表达式:y=-x+5和y=2x-1。
在同一坐标系下画出这两个函数的图象。
观察图象,找出交点坐标(即方程组的解)。
四、实践操作
学生分组,每组选择或设计一个二元一次方程组。
按照例题示范的方法,通过画图求解方程组。
小组内交流讨论,分享解题过程和结果。
五、课堂小结
本节课我们学习了二元一次方程组的'图象解法,通过画图实践,我们掌握了这种方法并加深了对数形结合思维的理解。
六、作业布置
用图象法解方程组3x+2y=8和x-y=1。
设计一个包含两个二元一次方程的方程组,并尝试用图象法求解。
二元一次方程与一次函数的教案 9
教学目标
知识与能力:
理解二元一次方程与一次函数的关系。
掌握通过图象求解二元一次方程组的方法。
情感态度与价值观:
激发学生对数学的兴趣,培养探索精神。
培养学生的数形结合意识,增强解决问题的能力。
教学重点
二元一次方程与一次函数的关系。
二元一次方程组的图象解法。
教学难点
数形结合的意识和能力的培养。
教学方法
学生自主探索与教师引导相结合。
教学过程
故事引入:
讲述法国数学家迪卡儿受到蜘蛛爬行的启示,创建了直角坐标系的故事。
引出直角坐标系在几何图形与方程之间建立联系的作用。
尝试探疑:
给出一次函数y=x+1,让学生思考它是否也可以看作一个二元一次方程。
引导学生通过计算和讨论,发现函数图象上的任意一点的坐标都满足方程xy=1。
得出函数y=x+1与方程xy=1的.关系。
图象解法:
在同一坐标系下,画出y=x+1与y=4x2的图象,找出交点坐标。
用消元法解方程组,比较与图象解法的结果。
引导学生得出结论:函数图象的交点坐标即为方程组的解。
应用与拓展:
用图象法解方程组x2y=2和2xy=2。
讨论方程组x+y=2和x+y=5的解的情况,并从函数的角度进行解释。
课后小结:
总结本节课的内容,强调二元一次方程与一次函数的关系以及图象解法的重要性。
作业布置:
用图象法解方程组2x+y=4和2x3y=12。
二元一次方程与一次函数的教案 10
教学目标
知识与能力:
深入理解二元一次方程与一次函数的相互转化。
能够灵活运用图象法解决二元一次方程组问题。
情感态度与价值观:
培养学生的创新思维和解决问题的能力。
激发学生对数学的兴趣,增强自信心。
教学重点
二元一次方程与一次函数的相互转化。
图象法在解决二元一次方程组中的应用。
教学难点
灵活运用图象法解决复杂问题。
教学方法
情境教学法与合作学习相结合。
教学过程
情境导入:
创设一个实际问题情境,如购物问题、行程问题等,引出二元一次方程组。
引导学生用一次函数表示问题中的关系,并画出图象。
新知探究:
分析图象上的点与二元一次方程的关系,理解图象法解方程组的原理。
通过小组讨论,让学生尝试用图象法解决引入的.实际问题。
巩固练习:
提供几个不同类型的二元一次方程组,让学生用图象法进行求解。
引导学生总结图象法解方程组的步骤和注意事项。
拓展延伸:
讨论图象法解方程组的局限性,如近似解的问题。
引入其他解方程组的方法,如代入消元法、加减消元法等,进行比较。
课堂小结:
总结本节课的内容,强调图象法在解决二元一次方程组中的重要作用。
鼓励学生多思考、多实践,灵活运用所学知识解决问题。
作业布置:
提供几个实际问题,让学生用二元一次方程和一次函数的知识进行求解,并画出图象。
【二元一次方程与一次函数的教案】相关文章:
二元一次方程教案07-27
二元一次方程组的数学课程教案03-25
一次函数教案07-07
初一数学用代入法解二元一次方程组的教案03-26
用代入法解二元一次方程组初一数学教案03-26
七年级数学二元一次方程组教案优秀10-04
人教版七年级数学下册二元一次方程组教案03-25
《一次函数》教学教案(精选15篇)08-11
一次函数的图象教案(精选14篇)04-12
一元一次方程教案11-12