教案

三角形的证明教案

时间:2025-05-29 14:11:06 银凤 教案 我要投稿
  • 相关推荐

三角形的证明教案(精选5篇)

  作为一位优秀的人民教师,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。写教案需要注意哪些格式呢?以下是小编收集整理的三角形的证明教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

三角形的证明教案(精选5篇)

  三角形的证明教案 1

  第一章三角形的证明

  【单元分析】

  本章是八年级上册第七章《平行线的证明》的继续,在“平等线的证明”一章中,我们给出了8条基本事实,并从其中的几条基本事实出发证明了有关平行线的一些结论。运用这些基本事实和已经学习过的定理,我们还可以证明有关三角形的一些结论。

  在这之前,学生已经对图形的性质及其相互关系进行了大量的探索,探索的同时也经历过一些简单的推理过程,已经具备了一定的推理能力,树立了初步的推理意识,从而为本章进一步严格证明三角形有关定理打下了基础。

  【单元目标】

  1.知识与技能

  (1)等腰三角形的性质和判定定理;

  (2)直角三角形的性质定理和判定定理;

  2.过程与方法

  (1)会运用等腰三角形的性质和判定定理解决相关问题;

  (2)直角三角形的性质定理和判定定理解决简单的实际问题;

  3.情感态度与价值观

  (1)经历由情景引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力;

  (2)感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

  【单元重点】

  在证明过程中,进一步感受证明过程,掌握推理证明的基本要求,明确条件和结论,能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。

  【单元难点】

  明确推理证明的基本要求如明确条件和结论,能否用数学语言正确表达等。

  【教学思路】

  1.对于已有命题的证明,教学过程中要注意引导学生回忆过去的探索、说理过程,从中获取严格证明的思路;对于新增命题,教学过程中要重视学生的探索、证明过程,关注该命题与其他已有命题之间的关系;对于整章的命题,注意关注将这些命题纳入一个命题系统,关注命题之间的关系,从而形成对相关图形整体的认识。

  2.对于证明的方法,除了注重启发和回忆,还应注意关注证明方法的多样性,力图通过学生的自主探索,获得多样的证明方法,并在比较中选择适当的方法。

  3.证明过程中注意揭示蕴含其中的'数学思想方法,如转化、归纳、类比等。

  4.作为初中阶段几何证明的最后阶段,教学中应要求学生掌握综合法和分析法证明命题的基本要求,掌握规范的证明表述过程,达成课程标准对证明表述的要求。

  1.1等腰三角形

  【教学目标】

  1.知识与技能

  理解作为证明基础的几条公理的内容,应用这些公理证明等腰三角形的性质定理。

  2.过程与方法

  经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。3.情感态度与价值观

  启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系。

  【教学重点】

  经历“探索——发现一一猜想——证明”的过程。

  【教学难点】

  用综合法证明有关三角形和等腰三角形的一些结论。

  【教学方法】

  讲授法【课时安排】

  4课时

  第一课时

  【教学目标】

  1.知识与技能

  能够借助数学符号语言利用综合法证明等腰三角形的性质定理和判定定理。

  2.过程与方法

  经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力。

  3.情感态度与价值观

  启发引导学生体会探索结论和证明结论,及合情推理与演绎的相互依赖和相互补充的辩证关系。

  证明:∵∠A=∠D,∠B=∠E(已知),

  又∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°),∴∠C=180°-(∠A+∠B),

  ∠F=180°-(∠D+∠E),∴∠C=∠F(等量代换)。又BC=EF(已知),∴△ABC≌△DEF(ASA)。

  【教学反思】

  三角形的证明教案 2

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

  3、结合实例体会反证法的含义。

  教学重点

  等腰三角形的关性质定理和判定定理。

  教学难点

  能够用综合法证明等腰三角形的关性质定理和判定定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、等腰三角形性质的探究

  1.让学生回忆上节课的教学内容,引导学生思考从等腰三角形中能找到哪些相等的线段。

  2.播放课件,结合刚才的问题讲解例1的命题,并为后面将此性质拓展埋下伏笔。

  3.分别演示:

  ∠ABC,∠ACE=∠ACB,k=,时,BD是否与CE相等。引导学生探究、猜测当k为其他整数时,BD与CE的关系。

  4.引导学生探究,对于上述例题,当AD=AC,AE=AB,k=,时,通过对例题的引申,培养学生的发散思维,经历探究—猜测—证明的学习过程。

  5.引导学生进一步推广,把上面3、4中的k取一般的自然数后,原结论是否仍然成立?要求学生说明理由或给出证明。

  6.对学生探究的结果予以汇总、点评,鼓励学生在自己做题目的时候也要多思多想,并要求学生对猜测的结果给出证明。

  7.提出新的问题,引导学生从“等角对等边”这个命题的反面思考问题,即思考它的逆命题是否成立。适时地引导学生思考可以用哪些方法证明?培养学生的推理能力。

  8.归纳学生提出的各种证法,清楚的分析证明的思路,培养学生演绎证明的初步的推理能力。

  9.启发学生思考:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,这个结论是否成立?如果成立,能否证明。这实际上是“等边对等角”的逆否命题,通过这样的表述可以提高学生的思维能力。

  10.总结这一证明方法,叙述并阐释反证法的含义,让学生了解。

  11.小结这两个课时的内容。

  作业:

  同步练习

  板书设计:

  1.积极思考,回忆以前所学知识,联想新问题。

  2.认真观看例1图形中线段的关系,积极思考,认真听讲。

  3.对于课件的演示很感兴趣,凭直观感觉可以猜测,不管k为何值,BD=CE总成立。基于前面例题的启发,想要给出证明。一部分学生可以自己给出证明,一部分学生需要老师的帮助。

  4.在已经探究了角的大小的改变对于BD,CE的.等长性没有影响,有了一些成就感之后,又面临新的任务:BD=CE吗?因此学生会满怀热情地进行这部分探究活动,而且有了前面的体验,探究也会比较顺利。

  5.兴致高涨,凭直觉猜测结论仍然成立。但有些学生给出全部证明可能会有困难。

  6.认真听讲,在掌握结论的同时受到老师的鼓励,有很高的热情进行后续学习。

  7.较少接触这样的命题,因此会感到新鲜,有用已知公理和定理对命题的真假性进行判断的欲望。在老师指导下完成证明。

  8,积极动脑思考,认真听讲,获得对演绎证明的初步体会。

  9.可以从直观上得出结论,但是此处要求证明,体会到证明的必要性。遇到认知上的冲突,激起学习欲望。

  10.怀有强烈的求知欲听讲,对反证法有了感性认识和一定的理解。

  11.体会老师的讲解,并根据小结记忆掌握知识。

  (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。)

  三角形的证明教案 3

  教学目标

  1、掌握证明的基本步骤和书写格式。

  2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

  教学重点

  等边三角形的判定定理和直角三角形的性质定理。

  教学难点

  能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

  教学方法

  教学后记

  教学内容及过程

  教师活动学生活动

  一、定理:一个角等于60°的等腰三角形是等边三角形

  1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

  2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

  3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

  二、一种特殊直角三角形的性质

  1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

  2.肯定学生的发现和解释,在此基础上进一步深入提问:在直角三角形中,30°所对的直角边与斜边有怎样的大小关系?

  3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

  4.让学生准备一张正方形纸片,按要求动手折叠。

  5.讲解例题,应用定理。

  6.布置学生做练习。

  练习:课本随堂练习1

  三、课堂小结:

  通过这节课的.学习你学到了什么知识?了解了什么证明方法?

  四、作业:同步练习

  板书设计:

  1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

  2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

  3.认真听讲,体会分类讨论的数学思维方法,理解定理。

  1.积极动手操作,并很快得到结果:可以拼出等边三角形。

  2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

  3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

  4.很有兴趣地折叠纸片,体会定理的应用。

  5.听讲,体会定理的应用。

  6.认真做练习。

  (学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

  三角形的证明教案 4

  一、学生知识状况分析

  学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

  活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

  二、教学任务分析

  上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

  知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

  (2)灵活运用三角形内角和定理解决相关问题。

  数学能力:用多种方法证明三角形定理,培养一题多解的能力。

  情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.

  三、教学过程分析

  本节课的设计分为四个环节:情境引入——探索新知——反馈练习,—课堂小结

  第一环节:情境引入

  活动内容:(1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  (1)(2)(3)(4)

  试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  教学效果:

  说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

  第二环节:探索新知

  活动内容:

  ①用严谨的证明来论证三角形内角和定理.

  ②看哪个同学想的'方法最多?

  方法一:过A点作DE∥BC

  ∵DE∥BC

  ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)

  ∵∠DAB+∠BAC+∠EAC=180°

  ∴∠BAC+∠B+∠C=180°(等量代换)

  方法二:作BC的延长线CD,过点C作射线CE∥BA.

  ∵CE∥BA

  ∴∠B=∠ECD(两直线平行,同位角相等)

  ∠A=∠ACE(两直线平行,内错角相等)

  ∵∠BCA+∠ACE+∠ECD=180°

  ∴∠A+∠B+∠ACB=180°(等量代换)

  活动目的:

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

  教学效果:

  添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的

  三角形的证明教案 5

  一、教材与学生知识现状分析:

  三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。三角形内角和定理的内容,学生在小学已经熟悉,小学时学生通过观察、实验得到了结论,七年级时学生又通过“拼”“折”“画”等感知了三角形内角和为180°的结论,完成了第一、二学段的学习。而到了第三学段,八年级学生需要运用演绎推理的方式加以证明。同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添加辅助线是解决数学问题(尤其是几何问题)的重要思想方法。学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的`知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。

  从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的证明思路,对培养学生的思维能力和推理能力将起到重要的作用。

  二、教学目标:

  知识与技能:三角形内角和定理的证明。

  能力训练要求:掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力。

  情感与价值观要求:通过新颖、有趣的实际问题,来激发学生的求知欲。

  三、教学重点:探索证明三角形内角和定理的不同方法。

  教学难点:三角形的内角和定理的证明方法的讨论。

  四、教法、学法和数学手段:

  采用“问题情景——建立模型——解释、应用与拓展”的模式展开教学。

  采用多媒体教学。

  五、教学过程

  第一环节:

  情境引入:学校教务处有一个折叠长梯(电脑显示图像),当打开时顶端的角是多少度?一名学生测出了两个梯腿

  活动内容:为了回答这个问题,先观察如下的实验:

  用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如下图),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC其内角会产生怎样的变化呢?

  请同学们猜一猜:三角形的内角和可能是多少?

  (1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(如下图(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  第二环节:探索新知

  但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明。那么怎样证明呢?请同学们再来看实验。

  这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把△ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方。

  这时,∠A与∠ACE能重合吗?

  因为同位角∠ECD=∠B。所以CE∥BA,所以能重合。

  这样我们就可以证明了:三角形的内角和等于180°。接下来来证明:三角形的内角和等于180°这个真命题。

  活动内容:

  由实验可知,我们猜对了!三角形的内角和正好为一个平角。

  这是一个文字命题,证明时需要先干什么呢?

  需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证。

  已知,如图,△ABC,求证:∠A+∠B+∠C=180°

  方法一:证明:作BC的延长线CD,过点C作射线CE∥AB。

  ∵CE∥BA(已作)

  ∴∠ACE=∠A(两直线平行,内错角相等)

  ∠ECD=∠B(两直线平行,同位角相等)

  ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)

  ∴∠A+∠B+∠ACB=180°(等量代换)

  即:∠A+∠B+∠C=180°。

  方法二:证明:过A点作DE∥BC

  ∵DE∥BC(已作)

  ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)

  ∵∠DAB+∠BAC+∠EAC=180°(1平角=180°)

  ∴∠BAC+∠B+∠C=180°(等量代换)

  活动目的:

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

  第三环节:反馈练习

  活动内容:

  (1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?

  (2)△ABC中,∠C=90°,∠A=30°,∠B=?

  (3)∠A=50°,∠B=∠C,则△ABC中∠B=?

  (4)三角形的三个内角中,只能有____个直角或____个钝角.

  (5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

  (6)三角形中三角之比为1∶2∶3,则三个角各为多少度?

  C D A E C D

  (7)已知:△ABC中,∠C=∠B=2∠A。

  (a)求∠B的度数;

  (b)若BD是AC边上的高,求∠DBC的度数?

  活动目的:

  通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

  第四环节:课堂小结

  活动内容:

  我们证明了一个很有用的三角形内角和定理,证明思想是,运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它。活动目的:

  复习巩固本课知识,提高学生的掌握程度.

  六、课后作业:课本第241页习题6.6第1,2,3题

【三角形的证明教案】相关文章:

小学三角形教案【精选】01-11

认识三角形教案07-30

三角形的分类教案08-29

《三角形的面积》教案06-13

小学三角形教案11-13

三角形教案及反思04-17

三角形内角和教案10-20

认识三角形小班教案07-16

认识三角形教案范文09-13

《三角形的内角和》教案05-17