【必备】小学数学教案四篇
作为一名教师,通常需要准备好一份教案,借助教案可以有效提升自己的教学能力。那么教案应该怎么写才合适呢?下面是小编帮大家整理的小学数学教案4篇,希望对大家有所帮助。
小学数学教案 篇1
教学内容
苏教版《义务教育课程规范实验教科书数学》四年级(下册)第50~51页。
教学目标
1. 使同学经历对两种事物进行搭配的过程,初步发现简单搭配现象中的规律,并能运用发现的规律解决简单的实际问题。
2. 使同学在观察、操作、笼统、概括、合作和交流等活动中,发展有序考虑的能力,培养初步的符号感。
3. 使同学在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。
教学准备
课件,上衣和裙子图片,记录纸,作业纸。
教学过程
一、 创设情境,初步感知搭配现象
谈话:无锡有许多旅游景点(多媒体显示无锡的风景图片),小红和爸爸妈妈想来无锡玩。为了这次旅游,妈妈给她准备了2件上衣(出示学具):一件绿色的和一件黄色的。还准备了3条裙子(出示学具):粉红色的、蓝色的和大红色的。用什么颜色的上衣配什么颜色的裙子呢?请同学们给她提些建议吧。
同学交流,教师操作。
小结:像这样,一件上衣配一条裙子,就是把上衣和裙子进行搭配。(板书:搭配)
二、 合作探究,体会有序考虑
1. 合作探究。
同桌合作,把所有的搭配情况都找出来,让小红自身挑。
合作要求:同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。
同学活动,教师巡视,关注同学中出现的不同的搭配方法。
请同学汇报搭配过程,教师演示。
小结:一共有6种不同的搭配方法。
2. 比较方法。
提问:通过刚才的观察,你更喜欢哪一组同学搭配的方法?为什么?
同学交流,体会有序搭配是比较好的方法。
小结:有序地搭配可以做到既不重复也不遗漏。(板书:有序,不重复,不遗漏)
3. 理解不同的搭配方法。
谈话:你们能像刚才这组同学一样,把上衣和裙子进行有序地搭配吗?请同桌两个同学再次合作,按自身的想法进行有序地搭配。
同学活动,教师巡视。
反馈:谁能具体地说一说,你们组是怎样有序搭配的?
同学一般会出现两种情况:(1) 选上衣,先用绿色上衣分别和3条裙子配,再用黄色上衣分别和3条裙子配。(2) 选裙子,先用粉红色的裙子和2件上衣配,再用蓝色的裙子和2件上衣配,最后用大红色的裙子和2件上衣配。
4. 小结。
谈话:(电脑演示)把2件上衣和3条裙子进行搭配,可以先用上衣进行有序搭配,也可以先用裙子进行有序搭配。
三、 创新表示,感受符号思想
出示问题:小红的爸爸为了这次旅游,准备了3件衬衫和3条领带,(课件出示3件衬衫和3条领带图)衬衫和领带有多少种不同的搭配方法呢?
1. 讨论。
启发:刚才我们用学具摆出了上衣和裙子有6种不同的搭配方法。现在你还有什么好方法可以把领带与衬衫的搭配方法全都表示出来呢?同桌讨论讨论。
全班交流,教师提示可用连线的方法。
2. 尝试。
谈话:请同学们用自身喜欢的方法在作业纸上有序地表示出这些搭配的方法吧。
展示同学作业,简要研讨。
小结:同学们想到的方法真多,有画实物的,有画简单图形的,还有用字母或数字表示的。
3. 比较。
这么多的表示方法,你更喜欢哪一种呢?为什么?
小结:看来,用简单的图形、字母或数字等符号表示实物的方法更简洁些。
4. 归纳。
电脑演示:电脑小博士就是用简单图形表示的',他用梯形表示领带,用长方形表示衬衫。把3条领带和3件衬衫进行搭配,可以先用领带进行有序搭配(电脑连线),也可以先用衬衫进行有序搭配(电脑连线)。
提问:假如领带的条数不变,衬衫减少一件,可以有多少种不同的搭配方法?
根据同学回答,板书:3×2=6。
再问:假如衬衫的件数不变,领带增加一条,可以有多少种不同的搭配方法?
根据同学回答,板书:4×3=12。
引导:通过刚才的活动,你有什么发现?衬衫的件数和领带的条数,与有多少种搭配方法是什么关系?
同学在小组里交流。
小结:领带条数与衬衫件数的乘积就是搭配的方法数,这就是搭配的规律(板书课题:搭配的规律)。
四、 运用规律,解决实际问题
1. 路线问题。
电脑演示:穿上漂亮的衣服,小红和爸爸妈妈高高兴兴地来到了无锡。打开地图,他们准备从火车站动身,经过五爱广场,到锡惠公园去玩。
提问:那从火车站到锡惠公园一共有多少种不同的走法呢?
同学交流。
再问:这么多的走法?选哪一种比较合适?
同学交流。
小结:当搭配的结果很多时,要注意选择最合适的搭配方案。
2. 奖品问题。
谈话:锡惠公园里有许多有奖游戏,小红的运气真不错,她得奖了。来到领奖处,让我们听听领奖处的叔叔跟她说了什么。
(电脑播放录音)“小朋友,恭喜你得奖。你可以选一个木偶,配上一顶帽子,或者配上一条围巾作为奖品。领奖之前我可要先考考你喔。现在有3只木偶,2顶帽子和3条围巾,一共有多少种不同的搭配的方法呢?”
同学交流不同的搭配方法。
3. 游戏问题。
同学们在做“石头、剪刀、布”的游戏时,有没有注意其中也有我们研究的搭配规律呢?你知道在这个游戏中,一共有多少种不同的搭配方法吗?怎样才干把各种不同的搭配方法有序地玩出来呢?
同桌商量,试着玩一玩。
交流玩法:一个同学连续出三次“石头”,另一个同学依次出“石头”“剪刀”和“布”,就这样玩下去。
同桌两人玩一玩,然后交换一下角色,再玩一玩。
同学活动后,说一说一共有几种不同的搭配方法。
小结:原来游戏中也有数学问题呢,只要我们留心观察,就会发现生活中处处有数学。
五、 全课小结,引导延伸
(略)。
小学数学教案 篇2
教学要求:
1.使学生进一步理解分数四则运算的意义和法则,能正确地进行分数四则运算。
2.使学生能正确地进行整数、小数和分数的四则馄合运算,并能灵活地选择合理的方法使计算简便,提高学生的计算能力。
教学过程:
一、揭示课题
这节课我们复习分数的四则运算。(板书课题)通过复习,进一步认识分数四则运算的意义和计算法则,能正确地进行整数、小数和分数四则混合运算,并能根据具体特点灵活地选择合理的方法,使一些计算简便。
二、复习分数四则运算的意义
1.提问:分数四则运算意义与整数四则运算的意义有哪些相同,有什么不同?指出:分数加减法和除法的意义与整数完全相同。在乘法里,除了求几个相同分数的和用乘法外,求一个数的几分之几是多少也用乘法。
2.做练习十六第1题。
指名学生口答,其中第(2)题要求说明理由.追问:要求一个数的几分之几是多少,用什么方法计算?
三、复习分数四则运算法则
1.复习加、减法计算。
(1)做练一练第1题加、减法。
让学生计算 + 、 - ,同时指名板演。集体订正,说说怎样算的。
(2)提问:分数加、减法怎样算?(板书:分数加减法:同分母的,分子加减,分母不变。异分母的,先通分再计算。)你能举例说明吗?为什么同分母分数加、减分母不变,分子相加、减,异分母分数要先通分再计算?(只有单位相同的'数才能直接相加、减)分数加、减法的法则与整数和小数的加、减法的法则有什么共同特点?(都是把相同单位的数直接相加、减,所以整数、小数是把相同单位的数相加、减,分数是把分子相加、减,分母不变)
2.复习分数乘、除法计算。
(1)做练一练第1题后四题。指名两人板演,其余学生分两组,每组做一组题。集体订正,说说怎样算的。
(2)提问:分数乘、除法怎样算?(板书:分数乘法;分子、分母分别相乘。分数除法:乘除数的倒数。)
3.做练一练第2题。
先让学生直接写出得数。小黑板出示,指名学生说出得数。第三、四行让学生说说是怎样算的。
四、复习四则棍合运算
1.做练一练第3题。
指名学生说一说各题的运算顺序。提问:分数四则混合运算是按怎样的顺序进行的?指出:分数四则混合运算顺序与整数、小数相同。(板书)指名四人板演,其余学生分两组,分别做前两题和后两题。集体订正。指出:分数四则混合运算要按照整数、小数的四则混合运算顺序进行计算,一步一步算出结果。
2.做练一练第4题。
让学生在课本上看一看,应用了哪些运算定律。小黑板出示,指名学生回答,并在小黑板上用适当的符号表示出来。追问:这样计算简便一些吗?为什么?指出:整数、小数的运算定律在分数里同样适用。在分数四则混合运算里,应用运算定律和规律,也可以使一些计算简便。
3.讨论练习十六第2题。
现在请大家看练习十六第3题。讨论一下,每道题的数有什么特点,怎样算比较简便。指名学生口答怎样算简便。
4.讨论练习十六第6题。
让学生讨论、填数。指名学生口答,并说明怎样想的,有几种填法。
五、课堂小结
这节课复习了哪些内容?你能把这些内容简要地概括一下吗?
六、布置作业
课堂作业:练习十六第3题右边四题,第4题下面三行,第5题。
家庭作业:练习十六第2题,第3题前五题,第4题第一行。
小学数学教案 篇3
[教学目标]
1.初步认识角,知道角的各部分名称。
2.能辨认、判断角和直角。
3.培养学生观察、判断、动手操作及合作交往的能力,初步建立空间观念,体验数学来源于实践的思想。
[教学重点和难点]
重点:初步认识角,知道角的各部分名称,会画角。
难点:引导学生从实物逐步抽象出几何角。形成角的表象的概念。
[教学过程]
(一)生活引入。
谈话::小朋友还记得我们一年级学过哪些图形吗?
教师出示一本书,问:谁知道这本书的这部分(师沿着一个顶点向两边摸,手势指出两条边所夹着的部分)叫什么吗?今天我们就来学习另外一种几何图形。 (板书课题:角)
老师挑选了几件物体,你能说说看,这些物体的角分别在哪里?(课件出示:书、剪刀和钟面:让学生逐一指出书上的角,剪刀形成的角,钟面上的'时针和分针形成的角。)
师:同学们说得真好!现在你能说说在我们的周围哪些物体的表面中有角?
(二)探究新知。
1.丰富感知,形成角的表象。
逐步抽象出角:认识了生活中的角,那么,数学中的角到底是什么样呢?我们一起来看(把刚才电脑投影的实物体逐渐去掉颜色及其他非本质的东西,只显露出角,明确指出这就是角)。
3.角的特点。
(课件出示)同学们仔细观察,这些角都有什么共同的地方?
(以钟面形成的角为例)一个角是由什么组成的?(一个点和2条线)
对,这个点我们把它叫作角的顶点(扇动3次:出现顶点)由顶点引出的2条直线叫作角的边。(扇动3次:出现边)
小学数学教案 篇4
知识网络
列方程解应用题最关键是前两步:设未知数和列方程。有的同学说解方程的部分不是篇幅很长么,为什么不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。
一般地,设什么量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。
设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如相等、是、比多、比少、是的几倍、的总和是、与的差是等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。
重点难点
列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程。而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。
学法指导
(1)列方程解应用题的一般步骤是:
1)弄清题意,找出已知条件和所求问题;
2)依题意确定等量关系,设未知数x;
3)根据等量关系列出方程;
4)解方程;
5)检验,写出答案。
(2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。
(3)对于变量较多并且变量关系又容易确定的问题,用方程组求解,过程更清晰。
经典例题
例1 某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。
思路剖析
如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦 如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中又有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数又在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,从而找出等量关系,即按均衡生产推算的总人数,列出方程 解 答
设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。
答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。
例2 牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?
思路剖析
这是以前接触过的牛吃草问题,它的算术解法步骤较多,这里用列方程的方法来解决。
设供25头牛可吃x天。
本题的等量关系比较隐蔽,读一下问题:每天牧草都匀速生长,草生长的速度是固定的,这就可以发掘出等量关系,如从供10头牛吃20天表达出生长速度,再从供15头牛吃10天表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。
解 答
设供25头牛可吃x天。
由:草的总量=每头牛每天吃的草头数天数
=原有的草+新生长的草
原有的草=每头牛每天吃的草头数天数-新生长的草
新生长的草=草的生长速度天数
考虑已知条件,有
原有的草=每头牛每天吃的草1020-草的生长速度20
原有的草=每头牛每天吃的草1510-草的生长速度10
所以:原有的草=每头牛每天吃的草200-草的生长速度20
原有的草=每头牛每天吃的草150-草的生长速度10
即:每头牛每天吃的草200-草的生长速度20
=每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200草的生长速度20+每头牛每天吃的草150-草的生长速度10
每头牛每天吃的草200-每头牛每天吃的草150
=草的生长速度20-草的生长速度10
每头牛每天吃的草(200-150)=草的生长速度(20-10)
所以:每头牛每天吃的草50=草的生长速度10
每头牛每天吃的草5=草的生长速度
因此,设每头牛每天吃的.草为1,则草的生长速度为5。
由:原有的草=每头牛每天吃的草25x-草的生长速度x
原有的草=每头牛每天吃的草1020-草的生长速度20
有:每头牛每天吃的草25x-草的生长速度x
=每头牛每天吃的草1020-草的生长速度20
所以:125x-5x=11020-520
解这个方程
25x-5x=1020-520
20x=100
x=5(天)
答:可供25头牛吃5天。
例3 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?
解 答
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程
解法一:用直接设元法。
80x-40=(30x+40)2
80x-40=60x+80
20x=120
x=6(座)
解法二:用间接设元法。
设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。
(x-40)30=(2x+40)80
(x-40)80=(2x+40)30
80x-3200=60x+1200
20x=4400
x=220(米3)
由灰砖有220米3,推知修建住宅(220-40)30=6(座)。
同理,也可设有红砖x米3。留给同学们练习。
答:计划修建住宅6座。
例4 两个数的和是100,差是8,求这两个数。
思路剖析
这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。
解 答
解法一:设较小的数为x,那么较大的数为x+8,根据题意它们的和是100,可以得到:
x+8+x=100
解这个方程:2x=100-8
所以 x=46
所以 较大的数是 46+8=54
也可以设较小的数为x,较大的数为100-x,根据它们的差是8列方程得:
100-x-x=8
所以 x=46
所以 较大的数为100-46=54
答:这两个数是46与54。
【小学数学教案】相关文章:
小学数学教案小学数学教案范文10-30
(经典)小学数学教案08-07
小学数学教案09-18
小学数学教案10-08
小学数学教案范文03-03
小学数学教案[优选]07-29
【优选】小学数学教案07-29
(实用)小学数学教案08-05
【精品】小学数学教案07-27
[精]小学数学教案07-30