- 相关推荐
函数教学教案设计(通用19篇)
作为一位优秀的人民教师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么什么样的教案才是好的呢?下面是小编精心整理的函数教学教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
函数教学教案设计 1
教学目标:
1.进一步理解指数函数的性质;
2.能较熟练地运用指数函数的性质解决指数函数的平移问题;
教学重点:
指数函数的性质的应用;
教学难点:
指数函数图象的平移变换.
教学过程:
一、情境创设
1.复习指数函数的概念、图象和性质
练习:函数=ax(a>0且a≠1)的定义域是_____,值域是______,函数图象所过的定点坐标为.若a>1,则当x>0时, 1;而当x<0时, 1.若0<a<1,则当x>0时, 1;而当x<0时, 1.
2.情境问题:指数函数的性质除了比较大小,还有什么作用呢?我们知道对任意的a>0且a≠1,函数=ax的图象恒过(0,1),那么对任意的a>0且a≠1,函数=a2x1的图象恒过哪一个定点呢?
二、数学应用与建构
例1 解不等式:
(1) ;(2) ;
(3) ;(4).
小结:解关于指数的不等式与判断几个指数值的大小一样,是指数性质的运用,关键是底数所在的范围.
例2 说明下列函数的图象与指数函数=2x的图象的关系,并画出它们的示意图:
(1) ; (2) ;(3) ;(4).
小结:指数函数的平移规律:=f(x)左右平移 =f(x+)(当>0时,向左平移,反之向右平移),上下平移 =f(x)+h(当h>0时,向上平移,反之向下平移).
练习:
(1)将函数f (x)=3x的图象向右平移3个单位,再向下平移2个单位,可以得到函数 的图象.
(2)将函数f (x)=3x的图象向右平移2个单位,再向上平移3个单位,可以得到函数 的图象.
(3)将函数 图象先向左平移2个单位,再向下平移1个单位所得函数的解析式是.
(4)对任意的.a>0且a≠1,函数=a2x1的图象恒过的定点的坐标是.函数=a2x-1的图象恒过的定点的坐标是.
小结:指数函数的定点往往是解决问题的突破口!定点与单调性相结合,就可以构造出函数的简图,从而许多问题就可以找到解决的突破口.
(5)如何利用函数f(x)=2x的图象,作出函数=2x和=2|x2|的图象?
(6)如何利用函数f(x)=2x的图象,作出函数=|2x-1|的图象?
小结:函数图象的对称变换规律.
例3 已知函数=f(x)是定义在R上的奇函数,且x<0时,f(x)=1-2x,试画出此函数的图象.
例4 求函数 的最小值以及取得最小值时的x值.
小结:复合函数常常需要换元来求解其最值.
练习:
(1)函数=ax在[0,1]上的最大值与最小值的和为3,则a等于 ;
(2)函数=2x的值域为 ;
(3)设a>0且a≠1,如果=a2x+2ax-1在[-1,1]上的最大值为14,求a的值;
(4)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围.
三、小结
1.指数函数的性质及应用;
2.指数型函数的定点问题;
3.指数型函数的草图及其变换规律.
四、作业:
课本P71-11,12,15题.
五、课后探究
(1)函数f(x)的定义域为(0,1),则函数 的定义域为.
(2)对于任意的x1,x2R ,若函数f(x)=2x ,试比较 的大小.
函数教学教案设计 2
教学目标
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1.反函数的概念;
2.反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的`启示)。
师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y= f (x)解出x= f –1(y),即把x用y表示出;
(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
(II)课堂练习 课本P68练习1、2、3、4。
(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
(IV)课后作业
一、课本P69习题2.4 1、2。
二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。
板书设计
课题: 求反函数的方法步骤:
定义:(幻灯片)
注意: 小结
一一映射确定的
函数才有反函数
函数与它的反函
数定义域、值域的关系。
函数教学教案设计 3
教学目标:
(一)教学知识点:
1.对数函数的概念;2.对数函数的图象和性质.
(二)能力训练要求:
1.理解对数函数的概念;2.掌握对数函数的图象和性质.
(三)德育渗透目标:
1.用联系的观点分析问题;2.认识事物之间的互相转化.
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:
问题:
1.指数函数是否存在反函数?
2.求指数函数的反函数.
3.结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的`图象与性质:
(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.练习:
(1)比较下列各组数中两个值的大小:
(2)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
函数教学教案设计 4
【学习目标】
1、从单位圆和图像两个角度研究正弦函数的变化规律,学习从不同角度观察、研究问题;
2、体会正弦函数的周期性在画y=sinx图像过程中的应用;
3、理解利用单位圆画正弦函数的图像,会用五点法画函数y = sinx,x∈[0,2π]的图象。
【学习重点】
用五点法绘制正弦函数图象
【学习难点】
利用单位圆画正弦函数图像
【思想方法】
能从图形观察、分析得出结论,体会数形结合的思想方法
【知识链接】
1、 三角函数在单位圆中的定义
2、 正余弦函数的周期性
【学习过程】
一、预习自学(把握基础)
阅读课本第25~28页“练习”以上部分的内容,紧抓五点法作图的规律
1、复习:正弦函数是一个周期函数,最小正周期是____,所以,关键就在于画出________上的正弦函数的图像。
2、预习:
(1)正弦函数 409【导学案】5.1正弦函数的图像, 409【导学案】5.1正弦函数的图像的图像叫做正弦曲线。
(2)五点作图法:
在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连接起来,就得到这个函数的简图。我们称这种画正弦曲线的方法为“五点法”,这五个关键点是:_________________________ ,描出这五个点后,函数y=sinx,x[0,2p]的图像的`形状就基本上确定了。
【导学案】5.1正弦函数的图像
二、合作探究(巩固深化,发展思维)
例1.用“五点法”画出下列函数在区间[0,2π]上的简图。
(1)y=-sinx (2)y=1+sinx
例2.用五点法作出函数y=3sinx, [0,2π]的图像。
三、学习体会
1、知识方法:
2、我的疑惑:
四、达标检测(相信自我,收获成功)
1、y=1+sinx,[0,2π]的图像与直线y= 409【导学案】5.1正弦函数的图像 的交点个数为
2、画出函数y=2+sinx x∈[0,2π]的图象。
3、画出函数y=sinx-1 x∈[0,2π]的图象。
函数教学教案设计 5
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的.函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
函数教学教案设计 6
教学目标:
1、掌握一次函数解析式的特点及意义
2、知道一次函数与正比例函数的关系
3、理解一次函数图象特点与解析式的联系规律
教学重点:
1、 一次函数解析式特点
2、 一次函数图象特征与解析式的联系规律
教学难点:
1、一次函数与正比例函数关系
2、根据已知信息写出一次函数的表达式。
教学过程:
Ⅰ.提出问题,创设情境
问题1 小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.
分析 我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是
s=570-95t.
说明 找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.
问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.
分析 我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.
问题3 以上问题1和问题2表示的这两个函数有什么共同点?
Ⅱ.导入新课
上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。并且自变量和因变量的指数都是一次。若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称
y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);
(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;
(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;
(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;
(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米) 分析 确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答. 解
(1)a=20,不是一次函数. h
(2)L=2b+16,L是b的一次函数.
(3)y=150-5x,y是x的一次函数.
(4)s=40t,s既是t的一次函数又是正比例函数.
(5)y=60x,y是x的.一次函数,也是x的正比例函数;
(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;
(7)y=50+2x,y是x的一次函数,但不是x的正比例函数
例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
分析 根据一次函数和正比例函数的定义,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
例4 已知y与x-3成正比例,当x=4时,y=3.
(1)写出y与x之间的函数关系式;
(2)y与x之间是什么函数关系;
(3)求x=2.5时,y的值.
解 (1)因为 y与x-3成正比例,所以y=k(x-3).
又因为x=4时,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函数.
(3)当x=2.5时,y=3×2.5=7.5.
1. 2
例5 已知A、B两地相距30千米,B、C两地相距48千米.某人骑自行车以每小时12千米的速度从A地出发,经过B地到达C地.设此人骑行时间为x(时),离B地距离为y(千米).
(1)当此人在A、B两地之间时,求y与x的函数关系及自变量x取值范围.
(2)当此人在B、C两地之间时,求y与x的函数关系及自变量x的取值范围.
分析 (1)当此人在A、B两地之间时,离B地距离y为A、B两地的距离与某人所走的路程的差.
(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.
分析 因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.
解 在第一阶段:y=3x(0≤x≤8);
在第二阶段:y=16+x(8≤x≤16);
在第三阶段:y=-2x+88(24≤x≤44).
Ⅲ.随堂练习
根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y是否为x有正比例函数?
2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。设每户每月用水量为x米3,应缴水费y元。
(1)写出每月用水量不超过6米3和超过6米3时,y与x之间的函数关系式,并判断它们是否为一次函数。
(2)已知某户5月份的用水量为8米3,求该用户5月份的水费。[①y=0.6x,y=x-2.4,y是x的一次函数。②y=8-2.4=5.6(元)]
Ⅳ.课时小结
1、一次函数、正比例函数的概念及关系。
2、能根据已知简单信息,写出一次函数的表达式。
Ⅴ.课后作业
1、已知y-3与x成正比例,且x=2时,y=7
(1)写出y与x之间的函数关系.
(2)y与x之间是什么函数关系.
(3)计算y=-4时x的值.
2.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y(元)与包裹重量x(千克)之间的函数解析式,并计算5千克重的包裹的邮资.
3.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系.
4.今年植树节,同学们种的树苗高约1.80米.据介绍,这种树苗在10年内平均每年长高0.35米.求树高与年数之间的函数关系式.并算一算4年后同学们中学毕业时这些树约有多高.
5.按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
函数教学教案设计 7
一、教材分析
本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。
托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。
函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。
二、学生学习情况分析
函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:
(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;
(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;
(三)高中用导数工具研究函数的单调性和最值。
1.有利条件
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。
2.不利条件
用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析
课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.
1.知识与能力目标:
⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;
⑵理解函数的三要素的含义及其相互关系;
⑶会求简单函数的定义域和值域
2.过程与方法目标:
⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;
⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.
3.情感、态度与价值观目标:
感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
四、教学重点、难点分析
1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;
重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。
突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的.语言描述抓住概念的精髓。
2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.
难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。
突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。
五、教法与学法分析
1.教法分析
本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。
2.学法分析
在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。
函数教学教案设计 8
一、教学内容分析
本节内容是高一数学必修4(苏教版)第三章《三角恒等变换》第一节的内容,重点放在两角差的余弦公式的推导和证明上,其次是利用公式解决一些简单的三角函数问题。 在学习本章之前,已经学习了三角函数及向量的有关知识,从而为沟通代数、几何与三角函数的联系提供了重要的工具。本章我们将使用这些工具探讨三角函数值的运算。本节内容不仅是推导正弦和(差)角公式、正切和(差)角公式及倍角公式的基础,对于三角变换,三角恒等式的证明,三角函数式的化简、求值等三角问题的解决有重要的支撑作用,而且其推导过程本身就具有重要的教育价值。
二、学生学习情况分析
本节课的主要内容是“两角差的余弦公式的推导及证明”,用到的工具有“单位圆中三角函数的定义”和“平面向量数量积的定义及坐标表示”,都属于基础知识,内容简单,容易理解和接受。但是在向量法证明的过程中,向量夹角的范围是[0,π],与两角差α-β的范围不一致,学生对角的范围说明不清,是本节课的难点。
三、设计思想
教学理念:以“研究性学习”为载体,培养学生自主学习、小组合作的能力。
教学原则:注重学生自主学习与探究能力的培养,体现学生个性的发展与小组合作共性的融合。
教学方法:先学后教,小组合作,师生互动。
四、教学目标
知识与技能:了解用向量法推导两角差的余弦公式的过程,掌握两角和(差)的余弦公式并能运用公式进行简单的三角函数式的化简、求值。
过程与方法:自主探究两角差的余弦公式的表现形式,经历用向量的数量积推导两角差的余弦公式的过程,并能独立利用余弦的差角公式推出余弦的和角公式,理解化归思想在三角变换中的作用。
情感态度与价值观:体验和感受数学发现和创造的过程,感悟事物之间普遍联系和转化的关系。
五、教学重点与难点
重点:两角差的余弦公式的推导及证明。
难点:引入向量法证明两角差的余弦公式及两角差范围的说明。
六、教学程序设计
1.情境创设,课上展示。
课前探究:
课上展示:请同学们展示一下课前所得到的结果吧。
设计意图:课前以问题串的形式给学生指明研究方向。问题层层递进,从特殊到一般,使学生的研究具有一定的坡度性。既让学生容易上手,又让学生在研究过程中慢慢深入与提高。
主要目的:让学生自主发现两角差的余弦公式的表达形式。
通过课上展示,学生把课下研究出来的成果与全班同学共享,产生共鸣,为进一步研究两角差的余弦公式做好准备,同时增强表达能力及自信心。
2.合作探究,小组展示。
探究一:两角差的余弦公式的推导
问题4:问题2中我们所得到的结论对于任意角还成立吗?你能证明吗?
问题5:观察我们得到结论的形式,你能联想到什么呢?
探究二:两角和的余弦公式的推导
问题6:你能根据差角的余弦公式推导出和角的余弦公式吗?
问题7:比较差角的余弦公式与和角的余弦公式,它们在结构上有何异同点?
通过小组展示,各个小组之间产生思维的碰撞,迸出火花,得到新的灵感与智慧。从而培养学生团结协作与小组合作的能力。
3.巩固知识,例题讲解。
例1:利用两角和与差的余弦公式证明下列诱导公式:
例3:化简cos100°cos40°+sin80°sin40°
设计意图:教师对各小组展示内容做适当点评,并且对“向量法证明的优点”,“向量法证明过程的完善”,“向量法中向量夹角与两角差的范围的统一”做简要讲解。
例1,例2都是公式的直接应用。例1让学生体会诱导公式将余弦的和差角公式推导出正弦的和差角公式,为下节课埋下伏笔。例2中根据cos15°的值求sin15°的值,tan15°的值的过程都是为推导正弦和差公式,正切和差公式做铺垫。
变式将例2中具体的角变成抽象的角,利用同角三角函数公式求解。在由sinα的值求cosα的值或由cosβ的'值求sinβ的值时,要注意根据角的范围确定三角函数值的符号。 例3:是公式的逆用,培养学生逆向思维的能力,让学生对公式结构再认识。
4.提升总结,巩固练习。
提升总结:针对上面的3个例题,谈谈你学到了什么?
(2)利用两角和差的余弦公式求值时,应注意观察、分析题设和公式的结构特点,从整体上把握公式,灵活的运用公式。
(3)在解题过程中,要注意角的范围,确定三角函数值的符号,以防增根、漏根。 设计意图:主要以学生总结为主,老师做适当点评及补充。
七、教学反思
本节课主要以学生的自主学习、小组合作为主,充分发挥了学生的自主探究能力和团队协作能力,提高了学生发现问题、探究问题和解决问题的能力。情境创设中利用三个问题让学生在课前提前熟悉本节课所学的内容“是什么”,“我能得到哪些结论”,调动了学生的思维与学习的积极性,激发了学生的求知欲。但是
但是如果给出图像,则又会限制数学优秀的学生的解题思路与方法,这对矛盾是由学生的差异所决定的。教师在课堂上应指导、启发学生,注意教学的示范性,明确解题的规范性,实现学生在学习过程中知识的跨越。总之,教学有法,教无定法,贵在得法,为了提高课堂教学效率,我们要从学生的实际出发,以学法带动教法,为高效课堂保驾护航。
函数教学教案设计 9
学习目标
1.函数奇偶性的概念
2.由函数图象研究函数的奇偶性
3.函数奇偶性的判断
重点:能运用函数奇偶性的定义判断函数的奇偶性
难点:理解函数的奇偶性
知识梳理:
1.轴对称图形:
2中心对称图形:
【概念探究】
1. 画出函数 ,与 的图像;并观察两个函数图像的对称性。
2. 求出 , 时的函数值,写出 , 。
结论: 。
3. 奇函数:___________________________________________________
4.偶函数:______________________________________________________
【概念深化】
(1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。
(2)、奇函数偶函数的定义域关于原点对称。
5、奇函数与偶函数图像的对称性:
如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。
如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。
6. 根据函数的`奇偶性,函数可以分为____________________________________.
题型一:判定函数的奇偶性。
例1、判断下列函数的奇偶性:
(1) (2) (3)
(4) (5)
练习:教材第49页,练习A第1题
总结:根据例题,你能给出用定义判断函数奇偶性的步骤?
题型二:利用奇偶性求函数解析式
例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。
练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。
已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式
题型三:利用奇偶性作函数图像
例3 研究函数 的`性质并作出它的图像
练习:教材第49练习A第3,4,5题,练习B第1,2题
当堂检测
1 已知 是定义在R上的奇函数,则( D )
A. B. C. D.
2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B )
A. 增函数且最小值为-7 B. 增函数且最大值为7
C. 减函数且最小值为-7 D. 减函数且最大值为7
3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C )
A. B. C. D.
4 已知函数 为奇函数,若 ,则 -1
5 若 是偶函数,则 的单调增区间是
6 下列函数中不是偶函数的是(D )
A B C D
7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A )
A B f(- )f(-2) f(3) C f(- )
8 奇函数 的图像必经过点( C )
A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( ))
9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A )
A 0 B 1 C 2 D 4
10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__
11若f(x)在 上是奇函数,且f(3)_f(-1)
12.解答题
用定义判断函数 的奇偶性。
13定义证明函数的奇偶性
已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数
14利用函数的奇偶性求函数的解析式:
已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。
函数教学教案设计 10
教材:已知三角函数值求角(反正弦,反余弦函数)
目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
过程:
一、简单理解反正弦,反余弦函数的意义。
由
1在R上无反函数。
2在 上, x与y是一一对应的,且区间 比较简单
在 上, 的反函数称作反正弦函数,记作 ,(奇函数)。
同理,由
在 上, 的反函数称作反余弦函数,记作
二、已知三角函数求角
首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函数是单调递增的,且符合条件的角只有一个
(即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
这里用到 是奇函数。
例二、1、已知 ,求
解:在 上余弦函数 是单调递减的,且符合条件的角只有一个
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的值。
解:由上题: 。
介绍:∵
上题
例三、(见课本P74-P75)略。
三、小结:求角的`多值性
法则:1、先决定角的象限。
2、如果函数值是正值,则先求出对应的锐角x;
如果函数值是负值,则先求出与其绝对值对应的锐角x,3、由诱导公式,求出符合条件的其它象限的角。
四、作业:
P76-77 练习 3
习题4.11 1,2,3,4中有关部分。
函数教学教案设计 11
教学目标
会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。
重 点
函数单调性的证明及判断。
难 点
函数单调性证明及其应用。
一、复习引入
1、函数的定义域、值域、图象、表示方法
2、函数单调性
(1)单调增函数
(2)单调减函数
(3)单调区间
二、例题分析
例1、画出下列函数图象,并写出单调区间:
(1) (2) (2)
例2、求证:函数 在区间 上是单调增函数。
例3、讨论函数 的单调性,并证明你的结论。
变(1)讨论函数 的单调性,并证明你的结论
变(2)讨论函数 的单调性,并证明你的结论。
例4、试判断函数 在 上的`单调性。
三、随堂练习
1、判断下列说法正确的是 。
(1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;
(2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;
(3)若定义在 上的.函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;
(4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。
2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函数 在 上是___ ___;函数 在 上是__ _____。
3.下图分别为函数 和 的图象,求函数 和 的单调增区间。
4、求证:函数 是定义域上的单调减函数。
四、回顾小结
1、函数单调性的判断及证明。
课后作业
一、基础题
1、求下列函数的单调区间
(1) (2)
2、画函数 的图象,并写出单调区间。
二、提高题
3、求证:函数 在 上是单调增函数。
4、若函数 ,求函数 的单调区间。
5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。
三、能力题
6、已知函数 ,试讨论函数f(x)在区间 上的单调性。
变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。
函数教学教案设计 12
知识技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;
2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。
学生讨论、交流以下问题,并将讨论、交流的结果回答问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有下列性质:
(1)当k>0时,函数的`图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在第二、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。
解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的.定义可知:解得,m=—2。
(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。
(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)因为100=5xy,所以。
(2)x>0。
(3)图象如下:
说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、交流反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;
(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反馈
1、在同一直角坐标系中画出下列函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时,?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0
函数教学教案设计 13
教学准备
1、教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依。
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识。
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性。
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题。
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系。
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的`任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function)
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range)。
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示。
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值。
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40。
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R。
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合。
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合。
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合。(即求各集合的交集)
(5)满足实际问题有意义。
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。
课堂小结
函数教学教案设计 14
教学目标:
1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;
2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;
3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考。
教学重点:
两集合间用对应来描述函数的概念;求基本函数的定义域和值域。
教学过程:
一、问题情境
1.情境。
正方形的边长为a,则正方形的周长为 ,面积为 。
2.问题。
在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?
二、学生活动
1.复述初中所学函数的概念;
2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;
3.举出生活中的实例,进一步说明函数的对应本质。
三、数学建构
1.用集合的`语言分别阐述23页的问题(1)、(2)、(3);
问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:
(1)这一变化过程中,有哪几个变量?
(2)这几个变量的范围分别是多少?
问题2 略.
问题3 略(详见23页).
2.函数:一般地,设A、B是两个非空的数集,如果按某种对应法则f,对于集合A中的每一个元素x,在集合B中都有惟一的元素和它对应,这样的对应叫做从A到B的'一个函数,通常记为=f(x),x∈A.其中,所有输入值x组成的集合A叫做函数=f(x)的定义域.
(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;
(2)函数的本质是一种对应;
(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格
(4)对应是建立在A、B两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).
3.函数=f(x)的定义域:
(1)每一个函数都有它的定义域,定义域是函数的生命线;
(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没
有指明定义域,那么就认为定义域为一切实数.
四、数学运用
例1.判断下列对应是否为集合A 到 B的函数:
(1)A={1,2,3,4,5},B={2,4,6,8,10},f:x→2x;
(2)A={1,2,3,4,5},B={0,2,4,6,8},f:x→2x;
(3)A={1,2,3,4,5},B=N,f:x→2x.
练习:判断下列对应是否为函数:
(1)x→2x,x≠0,x∈R;
(2)x→,这里2=x,x∈N,∈R。
例2 求下列函数的定义域:
(1)f(x)=x—1;(2)g(x)=x+1+1x。
例3 下列各组函数中,是否表示同一函数?为什么?
A.=x与=(x)2; B.=x2与=3x3;
C.=2x-1(x∈R)与=2t-1(t∈R); D.=x+2x-2与=x2-4
练习:课本26页练习1~4,6.
五、回顾小结
1.生活中两个相关变量的刻画→函数→对应(A→B)
2.函数的对应本质;
3.函数的对应法则和定义域.
六、作业:
课堂作业:课本31页习题2.1(1)第1,2两题.
函数教学教案设计 15
一、教学目的
1.使学生进一步理解自变量的取值范围和函数值的意义.
2.使学生会用描点法画出简单函数的图象.
二、教学重点、难点
重点:1.理解与认识函数图象的意义.
2.培养学生的看图、识图能力.
难点:在画图的三个步骤的列表中,如何恰当地选取自变量与函数的对应值问题.
三、教学过程
复习提问
1.函数有哪三种表示法?(答:解析法、列表法、图象法.)
2.结合函数y=x的图象,说明什么是函数的图象?
3.说出下列各点所在象限或坐标轴:
新课
1.画函数图象的方法是描点法.其步骤:
(1)列表.要注意适当选取自变量与函数的对应值.什么叫“适当”?——这就要求能选取表现函数图象特征的几个关键点.比如画函数y=3x的图象,其关键点是原点(0,0),只要再选取另一个点如M(3,9)就可以了.
一般地,我们把自变量与函数的对应值分别作为点的横坐标和纵坐标,这就要把自变量与函数的对应值列出表来.
(2)描点.我们把表中给出的有序实数对,看作点的坐标,在直角坐标系中描出相应的点.
(3)用光滑曲线连线.根据函数解析式比如y=3x,我们把所描的两个点(0,0),(3,9)连成直线.
一般地,根据函数解析式,我们列表、描点是有限的几个,只需在平面直角坐标系中,把这有限的几个点连成表示函数的曲线(或直线).
2.讲解画函数图象的.三个步骤和例.画出函数y=x+0.5的图象.
小结
本节课的重点是让学生根据函数解析式画函数图象的三个步骤,自己动手画图.
练习
①选用课本练习(前一节已作:列表、描点,本节要求连线)
②补充题:画出函数y=5x-2的图象.
作业
选用课本习题.
四、教学注意问题
1.注意渗透数形结合思想.通过研究函数的`图象,对图象所表示的一个变量随另一个变量的变化而变化就更有形象而直观的认识.把函数的解析式、列表、图象三者结合起来,更有利于认识函数的本质特征.
2.注意充分调动学生自己动手画图的积极性.
3.认识到由于计算器和计算机的普及化,代替了手工绘图功能.故在教学中要倾向培养学生看图、识图的能力.
函数教学教案设计 16
一、教学目的
1.使学生初步理解二次函数的概念。
2.使学生会用描点法画二次函数y=ax2的图象。
3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。
二、教学重点、难点
重点:对二次函数概念的初步理解。
难点:会用描点法画二次函数y=ax2的图象。
三、教学过程
复习提问
1.在下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2 — 2。
2.什么是一无二次方程?
3.怎样用找点法画函数的图象?
新课
1.由具体问题引出二次函数的定义。
(1)已知圆的面积是Scm2,圆的'半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。
(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。
(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?
解:(1)函数解析式是S=πR2;
(2)函数析式是S=30L—L2;
(3)函数解析式是y=50(1+x)2,即
y=50x2+100x+50。
由以上三例启发学生归纳出:
(1)函数解析式均为整式;
(2)处变量的最高次数是2。
我们说三个式子都表示的是二次函数。
一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。
2.画二次函数y=x2的图象。
函数教学教案设计 17
第一教时
教材:
角的概念的推广
目的:
要求学生掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
过程:
一、提出课题:“三角函数”
回忆初中学过的“锐角三角函数”——它是利用直角三角形中两边的比值来定义的。相对于现在,我们研究的三角函数是“任意角的三角函数”,它对我们今后的学习和研究都起着十分重要的作用,并且在各门学科技术中都有广泛应用。
二、角的概念的推广
1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”
2.讲解:“旋转”形成角(P4)
突出“旋转” 注意:“顶点”“始边”“终边”
“始边”往往合于轴正半轴
3.“正角”与“负角”——这是由旋转的方向所决定的。
记法:角 或 可以简记成
4.由于用“旋转”定义角之后,角的范围大大地扩大了。
1° 角有正负之分 如:a=210° b=-150° g=-660°
2° 角可以任意大
实例:体操动作:旋转2周(360°×2=720°) 3周(360°×3=1080°)
3° 还有零角 一条射线,没有旋转
三、关于“象限角”
为了研究方便,我们往往在平面直角坐标系中来讨论角
角的顶点合于坐标原点,角的始边合于 轴的正半轴,这样一来,角的`终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限)
例如:30° 390° -330°是第Ⅰ象限角 300° -60°是第Ⅳ象限角
585° 1180°是第Ⅲ象限角 -20xx°是第Ⅱ象限角等
四、关于终边相同的角
1.观察:390°,-330°角,它们的终边都与30°角的终边相同
2.终边相同的角都可以表示成一个0°到360°的角与 个周角的和
390°=30°+360°
-330°=30°-360° 30°=30°+0×360°
1470°=30°+4×360°
-1770°=30°-5×360°
3.所有与a终边相同的角连同a在内可以构成一个集合
即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和
4.例一 (P5 略)
五、小结: 1° 角的概念的推广
用“旋转”定义角 角的范围的扩大
2°“象限角”与“终边相同的角”
六、作业: P7 练习1、2、3、4
习题1.4 1
函数教学教案设计 18
教学目的:
知识目标:1.理解三角函数定义. 三角函数的定义域,三角函数线.
2.理解握各种三角函数在各象限内的符号.?
3.理解终边相同的角的同一三角函数值相等.
能力目标:
1.掌握三角函数定义. 三角函数的定义域,三角函数线.
2.掌握各种三角函数在各象限内的符号.?
3.掌握终边相同的角的同一三角函数值相等.
授课类型:复习课
教学模式:讲练结合
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1、三角函数定义. 三角函数的定义域,三角函数线,各种三角函数在各象限内的符号.诱导公式第一组.
2.确定下列各式的符号
(1)sin100°cs240° (2)sin5+tan5
3. .x取什么值时, 有意义?
4.若三角形的两内角,满足sincs 0,则此三角形必为……( )
A锐角三角形 B钝角三角形 C直角三角形 D以上三种情况都可能
5.若是第三象限角,则下列各式中不成立的是………………( )
A:sin+cs 0 B:tansin 0
C:csct 0 D:ctcsc 0
6.已知是第三象限角且,问是第几象限角?
二、讲解新课:
1、求下列函数的定义域:
(1) ; (2)
2、已知 ,则为第几象限角?
3、(1) 若θ在第四象限,试判断sin(csθ)cs(sinθ)的符号;
(2)若tan(csθ)ct(sinθ)>0,试指出θ所在的象限,并用图形表示出 的取值范围.
4、求证角θ为第三象限角的充分必要条件是
证明:必要性:∵θ是第三象限角,?
∴
充分性:∵sinθ<0,∴θ是第三或第四象限角或终边在y轴的非正半轴上
∵tanθ>0,∴θ是第一或第三象限角.?
∵sinθ<0,tanθ>0都成立.?
∴θ为第三象限角.?
5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.
三、巩固与练习
1 求函数 的值域
2 设是第二象限的.角,且 的范围.
四、小结:
五、课后作业:
1、利用单位圆中的三角函数线,确定下列各角的取值范围:
(1) sinα 2、角α的终边上的点P与A(a,b)关于x轴对称 ,角β的终边上的点Q与A关于直线=x对称.求sinαescβ+tanαctβ+secαcscβ的值. 一、重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。 二、重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求 三、做好课外与学生的沟通 学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点 四、要多了解学生 你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。 二次函数教学方法一 一、立足教材,夯实双基: 进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现 二、立足课堂,提高效率: 做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。 三、教师在设计教学目标时,要做到胸中有书,目中有人 让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。 四、激发兴趣,提高质量: 兴趣是学习最好的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的.过程中体验成功的快感。这样他们才会更有兴趣的学习下去。 二次函数教学方法二 1、质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。 2、二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。 3、生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。 4、初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。 4二次函数教学方法三 1、教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。 2、教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。 3、教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事; 4、教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。 【函数教学教案设计】相关文章: 函数教学论文07-26 渗透函数思想教学策划03-25 c语言函数教学ppt课件10-29 高中数学函数的教学论文08-16 正弦函数、余弦函数的图象教案09-08 分段函数04-01 高中函数教案11-28 《函数的概念》教案06-25 关于《师说》教学教案设计03-26 函数教学教案设计 19