学习方法

数学最好的学习方法

时间:2024-11-01 12:04:09 学习方法 我要投稿
  • 相关推荐

数学最好的学习方法

  在日复一日的学习、工作或生活中,大家都在不断地学习,找到适合的学习方法,能够让大家学习更有效率!想要高效学习,却不知道怎么做?以下是小编整理的数学最好的学习方法,欢迎阅读,希望大家能够喜欢。

数学最好的学习方法

数学最好的学习方法1

  数学最好学习方法

  1、做题之后加强反思

  学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

  2、错题本

  说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

  3、夯实基础,学会思考

  数学中考试题中,基础分值占的最多。因此,初三数学复习教学中,必须扎扎实实地夯实基础,使每个学生对初中数学知识都能达到“理解”和“掌握”的要求;在应用基础知识时能做到熟练、正确和迅速。

  4、双基训练

  双基即基础知识与基本技能。基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。只有扎实地掌握“双基”,才能灵活应用、深入探索,不断创新。

  数学学习方法技巧

  部分分式是初中数学竞赛的重要内容,在初中数学竞赛中常有应用,而且在今后学习微积分时还要经常用到。部分分式中体现出来的把整体分解成部分来处理问题的方法也是一种重要的'思想方法,这种方法对我们解决问题有指导意义。下面我们介绍部分分式及其应用。

  对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式。如果一个分式不是真分式,可以通过带余除法化为一个多项式与一个真分式的和。把一个真分式化为几个更简单的真分式的代数和,称为将分式化为部分分式。

  把一个分式分为部分分式的一般步骤是:

  (1)把一个分式化成一个整式与一个真分式的和;

  (2)把真分式的分母分解因式;

  (3)根据真分式的分母分解因式后的形式,引入待定系数来表示成为部分分式的形式;

  (4)利用多项式恒等的性质和多项式恒等定理列出关于待定系数的方程或方程组;

  (5)解方程或方程组,求待定系数的值;

  (6)把待定系数的值代入所设的分式中,写出部分分式。

数学最好的学习方法2

  1、平时多进行分析推理练习

  因为数学的很多题目都是要靠分析和推理的,那不妨试试自己推理和分析,平时多练,这样不仅可以加深对公式的理解,还有助于题高自己的思维和分析推理能力,让自己对书本的知识更熟悉。

  2、打好基础

  不要以为只要自己学会推理和分析就很厉害了,老师所讲的内容也是尤为重要的,老师所讲的内容正是基础和常用的,如果连这些你都不能掌握好,那怎么去解题呢?所以听课的时候要特别认真,而且平时还要多做练习。

  3、做题时画出重点和难点

  在看题目的时候可以将一些重点的画出来,这样有助于解题时打开思路,否则一条很长的题目,你看一遍,忘了重点,又再看题目,这样会非常浪费时间,所以平时看题目的时候要养成画重点的习惯,特别是像一些平时自己经常会搞错或者看错的地方,要重点画出来。

  4、做题前要先复习

  做作业前记住要先复习,经过再一次的学习,你的思路会更清晰,那样在解题过程中你的思路会更清晰,做题时也会更有自信。

  数学主要是培养学生的思考、分析和解决问题的能力,如果你可以做好以上几点,那相信你的数学也是可以提高的。

  数学教学心得

  本学期,我担任六年级数学教学工作。在一学期的实际教学中,我按照教学大纲的要求,结合本校的实际条件和学生的实际情况,全面实施素质教育,努力提高自身的业务水平和教学能力。学校本学期开展四个一活动,我认真从四个方面加强了我的教学工作。同时为了全区的千人赛课活动,积极做好筹备工作。为了克服不足,总结经验,使今后的工作更上一层楼,现对本学期教学工作作出如下总结:

  一、认真备课。上好一节课的关键是备好课。备课时,我结合教材的内容和学生的实际,精心设计每一堂课的教学过程,不但要考虑知识的相互联系,而且拟定采用的教学方法,以及各教学环节的自然衔接;既要突出本节课的难点,又要突破本节课的'重点。备课中融入的是教师对教材的理解和把握,每次备课时,我都有自己对教材独到的理解。在课堂实施过程中,不同层次的学生都受益。每次备课我都要搜集好本课内容相关的练习,从易到难,有层次和梯度。在新授内容结束时,用这套题型做好新授知识点的巩固和提升,效果良好。同时认真写好教案和课后反思。

  二、认真上课:为了提高教学质量,体现新的育人理念,把"知识与技能,过程与方法,情感态度与价值观"的教学目标真正实施在实际的课堂教学之中。课堂教学以人为本,注重精讲多练,特别注意调动学生的积极性,强化他们探究合作意识。对于每一节课新知的学习,我通过联系现实生活,让学生们在生活中感知数学,学习数学,运用数学;通过小组交流活动,让学生在探究合作中动手操作,掌握方法,体验成功等.鼓励学习大胆质疑,注重每一个层次的学生学习需求和学习能力.从而,把课堂还给了学生,使学生成了学习的主人.。在课堂上,我尤其注重学困生的积极参与,我班的莫巨文、刘茂辉、倪世凯、小张宇、林最杰等一大批学困生在我的课堂上认真听讲,全身心投入课堂中,数学成绩常常取得意想不到的高分。他们更加热爱学习数学,李海洋在升学考试中取得93分的好成绩。

  三、认真批改作业。对于学生作业的布置,我本着"因人而异,适中适量"的原则进行合理安排,既要使作业有基础性,针对性,综合性,又要考虑学生的不同实际,突出层次性,坚决不做毫无意义的作业。在作业中给予学生积极地评价,鼓励学生认真思考。同时,从作业中发现学生对知识的掌握情况,出错率在50%以上的,我认真作出分析,并进行集体讲评。对学生的每次作业做到批改及时,认真并做到了面批面改。

  四、认真做好后进行转化工作。本班42名学生中,学习中下者将近占三分之一,,所以"抓差补缺"工作认真尤为重要.本学期,我除了在课堂上多照顾他们外,课后还给他们"开小灶".首先,我通过和他们主动谈心,拉近距离,分析他们学习中出现差距的原因,并从心理上疏导他们,使他们建立了自信心;其次,对他们进行了辅导.对于他们遗漏的知识,我主动为他们弥补,对于新学内容,我耐心为他们讲解,并让他们每天为自己制定一个目标,同时我还对他们的点滴进步及时给予鼓励表扬,通过一学期的努力,在升学考试中只有两名学生成绩为中,其他补差班的学生为良,一名学生为优。我想这和我一贯的狠抓学困生的课堂表现和调动学困生的积极性是分不开的。外因总是通过内因而起作用。

  多位数乘一位数

  1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

  2、

  ①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ①0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数;

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍;

  ②用和减一个加数,看结果是不是等于另一个加数。

  数学最好的学习方法相关文章:

数学最好的学习方法3

  学习方法

  首先,不要忽视课本。把高一高二的所有教学课本找出来,认认真真仔仔细细地把里面的知识点定理公理等等都看一遍,包括书上的证明也不要忽视。不是说看一遍就了事的,而是真正的去理解他。因为在你高一高二所有的月考,期中考,期末考,经历了这么多题海战术之后你要做的就是要回归课本。你会发现有些高考题,他是很巧妙的利用了书上一些简单的定义进行变换和引申得到的。所以当老师带着从头复习的时候,不要排斥,而是要回忆,消化,理解和掌握这些书本上的基础知识。

  第二,要尝试着去掌握一些新的定理和法则。在高一高二的时候,老师可能会说这个公式不是大纲要求的,所以不必掌握。这是完全正确的,因为当时所有的知识都是新的,你在面对过多新知识的时候,很难消化和掌握。但是现在你已经掌握了很多知识的基础上,在去适当的结合自己的能力去了解一些考纲之外的,就更容易掌握了。比如洛必达法则,高中虽然不讲,但是在答大题的时候用起来很方便的一个法则。如果你掌握了,你就会比别人做的更好更快更准确。

  1、配方法

  数学必会公式

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的`性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  5、待定系数法

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

  7、反证法

  反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

  反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。

  归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

【数学最好的学习方法】相关文章:

最好的学习方法03-21

数学的学习方法05-16

数学的学习方法11-15

数学的学习方法06-14

初中最好的学习方法大全02-28

中学最好的地理学习方法09-18

小学数学的学习方法04-01

数学学习方法02-14

数学学习方法【经典】10-20