四年级下册教案数学人教版
作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。我们应该怎么写教案呢?以下是小编为大家整理的四年级下册教案数学人教版,欢迎大家分享。
四年级下册教案数学人教版1
教学内容:人教版四年级下册第二单元教科书第13页例1与“做一做”,练习四第1-3题。
学习目标:
1、通过操作、观察、想象、判断等活动,能正确辨认从前面、上面、左面观察到的用几个正方体搭成的几何体的形状,并能画出所看到的形状,空间想象能力和推理能力得到发展。
2、经历观察的过程,通过对比、交流、判断,知道同一个立体图形从不同的方向看,看到的形状可能不同,也可能相同;知道不同形状的立体图形,从同一个方向观察,看到的形状可能相同,也可能不同。
教学重点:通过观察,正确辨认从不同方向观察到的组合几何体的形状。
教学难点:在实际观察活动中,从观察的物体抽象出平面图形。
评价任务:
1、能画出从前面、左面、上面观察的立体图形的形状,并能正确连一连。
2、能判断一个立体图形从不同的方向看,看到的形状可能不同,也可能相同。
教学准备:课件;师:若干正方体;学生:同桌各准备2个同样大小的正方体,人手一张方格图纸,铅笔、尺子。
教学过程:
一、复习导入,揭示课题
1、出示PPT2:
师:看到这几个图片,你想起了什么?我们在二年级学习观察物体时,强调观察物体时应该注意什么?
2、出示PPT3:
师:根据这个情景图,你能说一说我们在观察立体图形时一般从几个方向进行观察?观察时要注意什么?
学生观察图片,交流。
总结:观察立体图形时一般从前面、左面和上面进行观察,观察时眼睛要平视物体。
这节课我们就来继续学习从前面、左面、上面观察立体组合图形。板书课题:观察物体。
二、探究新知
1、提问(PPT3):图中同学们观察的是什么图形?每个人从自己的视角看到的'是什么图形?
2、小结:观察的是立体图形,但看到的每一个面都是正方形的,是平面图形。
提问:你会在方格纸上画出正方形吗?
3、观察、交流
把两个正方体横摆拼搭在一起,放在讲桌上,请一名学生用合适的观察方法观察这个组合体,说说从不同方向观察到的形状。学生用自己的学具观察验证说的是否正确。
师:你能否将从前面、左面、上面看到的形状画出来呢?学生动手画一画。
交流检查画的是否正确。
4、学习例1
(1)动手摆一摆、画一画
PPT4出示摆放要求,学生按要求动手摆一摆,课件出示准确摆法,再检查。
PPT5出示观察要求,学生按要求依次观察,同桌互相说一说看到的是什么形状?
然后将从三个方向看到的形状画出来。
巡视学生画的是否正确,对有困难学生进行及时的指导。
汇报交流,展示学生的画法,全班集体订正。
(2)辨认:PPT6出示例1图
提问:这些图形,分别是小华从什么位置看到的?请你帮小华判断一下,然后连一连。
学生汇报连线。
(3)判断:大家都清楚了从前面、上面、左面观察这个组合体分别得到的平面图形。那你们看一看,从前面、左面、上面看到的形状是否相同呢?(不同)我能不能说:从不同的方向观察一个立体图形,所看到的形状都不相同。
学生思考后交流判断,并说明判断的理由。
三、练习巩固:
1、观察与辨认
PPT7出示教科书第13页的“做一做”图,你能画出小强从三个方向观察到的形状吗?学生画一画,然后汇报连线。
2、辨认与思考
PPT8出示例1组合图和做一做组合图。
提问:这两个组合图形形状相同吗?(不同形状)
请大家观察你们所画的不同方向观察后的形状,对比一下从前面看到的形状是否相同?从左面看呢?从上面看呢?
学生回答后,课件依次出示观察到的形状,学生对比发现,并完成填空。
根据填空我们可以得出什么结论?
学生交流后总结:不同形状的立体图形,从同一方向观察,看到的形状可能相同,也可能不同。
3、巩固练习、拓展延伸
练习四第一题:说一说、连一连。
先根据立体图形描述组合体。在辨认观察到的形状并连线。
练习四第2题。独立完成,有困难的学生动手搭一搭,说一说,再连一连。
练习四第3题。动手摆一摆,观察后再画一画。
四、全课总结
这节课我们学习了什么内容?你学会了什么?
板书设计
四年级下册教案数学人教版2
教学目标:
1.借助具体情景操作认识平角和周角,使学生建立平角、周角概念。
2.通过操作活动,知道周角、平角形成过程及与各种角的关系,把钝角范围补充完整。
3.能正确画平角和周角,找出生活中的平角、周角。发展学生空间观念。
教学重点:
平角、周角的特征。
教学难点:
知道平角、周角形成过程并会叙述。
教学准备:
活动角、纸扇、一张纸。
教学过程:
一、激发兴趣导入
1、 ①师:老师想考考同学们的记忆力,拿出一张白纸,在黑板上演示,像老师这样对折一次,再对折一次。指着角问同学:这是什么角?你是怎么知道的?
生回答:1、量角器量的 2、三角板对比的
板书:直角等于90度
②师:比90度角小的角是什么角? 生回答后,板书 :锐角 小于90度
③师:比90度角大的角是什么角? 生回答后,板书 :钝角 大于90度
2. 今天老师又给你们带来两位新朋友,今天我们继续学习角并板书:平角、周角(彩笔)。
快来打声招呼吧!
3.读一读,平角、周角。你知道什么?生回答:角的度数! 边在哪边?今天我带同学们一起走进平角周角。
二、探究新知
1.学习平角
你们想当魔术师吗?
举起纸,这是90度角,翻过来,指着角,这是什么角?你是怎么知道的?
板书:画上直角符号,让同学们也画上直角符号。
变!这就是平角,听!平角大声跟同学们说:我是平角,我愿意跟同学们交朋友。同学们,你们也变,认真看平角,讨论:你发现了什么?快说给同学们听,一定要认真听,互相补充。
学生展示,板书:一平角=2直角=180度。两条边在第一次折痕上引导学生说,角的两条边在一条直线上,这样的角就叫做平角。
让学生拿出活动角,转动时,注意角的一边不动,另一边绕着角的顶点旋转成平角。让学生指出平角的顶点和两条边,板书:画平角。让学生也跟着画平角,齐读两遍平角的特征。
2.学习周角
我还会变呢,翻动平角纸,这又是什么角?说理由。画上符号,要求学生也画上两个直角符号,变!这就是周角,听!同学们好 我是周角,我愿意和同学们交朋友!
讨论:和同桌说说你的发现!生按顺序展示后,教师板书:1周角=4直角=2平角=360
定义:有四个直角组成一个新的角,这样的角叫做周角。
让学生试着用活动角转动周角,画周角,然后,指出周角的顶点和两条边。
齐读周角的特征,再齐读平角和周角的'特征。
三、进一步感受平角、周角。
1.伸出一条胳膊。旋转平角、周角。同桌互相转,展示转。学生评价。
四、补充钝角范围
师:老师有个问题,180度,360度都比90度大,但他们不叫钝角,再平角上展示活动角,活动角的一条边,在0度90度区域形成的角是锐角,在90度180度形成的区域形成的角是钝角,请学生说一说钝角比谁大?比谁小?
生回答后, 板书:而小于180度。
五、让学生寻找生活中的周角、平角。
互相说,展示说,评价。
六、巩固练习.
1.游戏,用纸扇摆角,同桌说角,老师摆角,考同学说角
2.判断:⑴平角是一条直线,⑵周角是一条射线,⑶一个周角等于四个平角,
3.抢答题:⑴从小到大排序:直角、钝角、平角、锐角、周角,⑵从大到小排序:直角、钝角、平角、锐角、周角。
4.再出一个难一点的题:(要求说清理由)
1=752=? 3=? 4=?
七、总结
你们知道了平角、周角,现在让你扮演角色,平角、周角,做个自我介绍吧!
板书设计:
角
锐角 直角 钝角 平角 周角
比90角小 比90角大 1平角=2直角=180
四年级下册教案数学人教版3
教学目标
1.掌握含有中括号算式的运算顺序,正确计算三步式题。
2.能根据数量关系和运算顺序,列综合算式解决实际问题。
3.培养学生学习数学的兴趣,通过解决实际问题收获到成功的喜悦。
教学重难点
1.掌握含有中括号的算式的运算顺序。
2.列综合算式解决实际问题。
教学过程:
一、复习旧知(学生独立完成并汇报答案,老师讲评。)
1.在没有括号的算式里,有乘、除法和加、减法,要先算( ),再算( )。
2.在有括号的算式里,要先算( ),再算( )。
3.在计算(65-33)×4时,要先算( )法,再算( )法。
4.在计算34÷(2+13×3)时,先算( )的( )法和( )法,最后再算( )法。
5.在计算2×(180-78÷3)时,先算( )法,再算( )法,最后算( )法。
【设计意图】
通过设置不同层次的课前练习,唤起学生对已学知识的记忆,为学习新知做好心理和知识方面的准备。
二、探究新知
1.根据算式说运算顺序,再计算。
96÷(12+4)×2
2.如果要先算加法,再算乘法,最后算除法,应该怎么办?
(1)尝试:96÷((12+4)×2)
(2)介绍:这种算式里有两个小括号,容易混淆,其实数学家还发明了另一种表示符号,就是把外面的小括号改成中括号“[ ]”,算式变成96÷[(12+4)×2]
(3)你知道小括号和中括号的由来吗?
小括号“( )”是公元17世纪由荷兰人古拉特首先使用的。
中括号“[ ]” 是公元17世纪由英国数学家瓦里士最先使用的。在以后的学习中还会用到大括号“{ }”,又称为花括号。大括号是法国数学家韦达在1593年首先使用的。
师:本节课我们又认识了一个新朋友--“[ ]”,(板书课题:含有中括号的四则运算)
3.说说该算式的运算顺序?并计算出来?
96÷[(12+4)×2]
=96÷[16×2]
=96÷32
=3
4.小结。
师:如果算式中既有中括号,又有小括号?运算顺序又是怎样的呢?(在一个算式里,既有小括号,又有中括号,要先算小括号里的,再算中括号里面的。)
【设计意图】
通过情景串联把枯燥的`计算融入到有趣的实际问题中,让学生在解决实际问题中探究新知。
三、练习巩固
1.完成第9页做一做。
先说一说下面各题的运算顺序,再计算。
2.完成教材练习三第1题。
先说一说下面各题的运算顺序,再计算。
3.完成教材练习三第2题。
先说一说下面各题的运算顺序,再计算。
4.拓展练习。
根据运算顺序添上小括号或中括号。
(1)32 × 800 - 400 ÷ 25 先减再乘最后除。
(2)32 × 800 - 400 ÷ 25 先除再减最后乘。
(3)32 × 800 - 400 ÷ 25 先减再除最后乘。
师:本题实际就是按照要求的顺序进行先添小括号,再添加中括号,添加完后检查运算顺序。
【设计意图】
本节课设置了层次多样的练习,而且设置了几道独立练习锻炼了学生独立完成的能力,也再次巩固和反馈学生学习新知的情况。
四、练习作业
完成教材练习三第4、5题。
五、评价总结
总结:做四则混合运算时应按照运算顺序一步一步的计算。
教后思考:
四年级下册教案数学人教版4
教学内容:
课本22页例3和做一做及练习四1、2题。
教学目标:
1、通过活动使学生学会以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、通过学习,进一步提高学生的空间观念。
重点难点:
使学生进一步认识到位置关系的相对性。
教学用具:
挂图
教学过程:
一、创设情境 生成问题
1、师:老师站在大家的正东方向上,那么你们站在老师的什么方向上呢?(西方)对,我们的位置关系是相对的。
2、分别指两名学生,让大家根据方向说一说他们的位置关系。
(设计意图:组织学生先弄清东西南北四个方向,再根据两名学生的位置分别说一说谁站在谁的方向上,使学生初步理解位置的相对关系。)
3、师:今天我们就来继续研究两个物体位置的相对关系。
(设计意图:通过创设情境,让学生对上两节课学习内容有一个大体的回顾,为本节课新知识的学习做准备。)
二、探索交流 解决问题
1、出示教材第22页例3主题图。
(1)让生观察地图
师:北京和上海两地相距大约 1000千米,说一说,上海在北京的什么方向上?
①组织学生用直尺,量角器测量出上海在北京的什么方向上。
师根据学生汇报板书: ②讨论:上海在北京的南偏东30℃方向上,那么北京在上海的什么位置呢?
组织学生观察上图,在小组中讨论,然后交流说一说。
出示提示
1.确定以谁为观测点,并建立方向标。
2.用语言描述北京和上海的具体位置。
讨论后每组选出一名同学在班内汇报。
生汇报。
可能会说出:北京在上海的西偏北60℃方向上或北京在上海的北偏西30℃的方向上。
师对照图示指一指,肯定两种说法都是正确的.。
师小结:以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北京在上海的北偏西30度的方向上。
观测点不同,物体的相对位置就会发生变化。这就是今天这节课学习的内容。
四年级下册教案数学人教版5
第一单元四则运算
单元目标:
1.结合具体情境,理解加、减、乘、除四则运算的意义,掌握四则运算中各部分间的关系,对四则运算知识进行较系统的概括和总结。
2.认识中括号,掌握四则混合运算的顺序,能进行简单的四则混合运算。
3.让学生经历解决问题的过程,学会用四则混合运算知识解决一些实际问题,感受解决问题的一些策略和方法。
4.通过数学学习,提高抽象概括能力,养成认真审题、独立思考的良好学习习惯。
内容分析:
这一单元是这册书中一个重点单元。本单元主要并梳理混合运算的顺序。混合运算前面学生已经学会按从左往右的顺序计算两步式题,并且知道小括号的作用,这里主要含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。其主要内容有:整理同级运算的顺序,教学并整理含两级运算的顺序及含有小括号的运算顺序、有关0的运算。
学情分析:
四则运算的知识和技能是小学生学习数学需要掌握的'基础知识和基本技能。学生在一到三年级时已经学习了较多关于四则混合运算的知识,在解决现实问题的过程中,能初步理解混合运算的作用,体会运算顺序。在第二学段本册的教学内容中,学生已经具备较丰富的感性经验基础,能够较好的理解比较抽象的运算顺序,符合学生的学习认知规律。
教学重点:熟练掌握四则混合运算顺序加带有括号的混合运算顺序。
教学难点:四则混合运算顺序的学习。课题:加、减法的意义和各部分间的关系
课题:加、减法的意义和各部分间的关系
教学内容:教科书2—3页例1与“做一做”,练习一第1-5题。
教学目标:
1.从实例中归纳加减法的意义和关系,初步理解加法与减法的意义以及它们之间的互逆关系。
2.初步学会利用加减法算式中各部分之间的关系求解加减法算式中的未知数。
3.培养学生发现数学知识和运用数学知识解决问题的能力。
教学重点:理解加、减法的意义和利用加减法的关系求加减法中的未知量。
教学难点:从实例中探究加、减法的互逆关系。
教学准备:口算卡片。
教学设计
一、复习铺垫
加减5分钟口算。
二、创设情境,引入新课
1、理解加法的意义。
出示例1(1)一列火车从西宁经过格尔木开往拉萨。西宁到格尔木的铁路长814 km,格尔木到拉萨的铁路长1142 km。西宁到拉萨的铁路长多少千米?
(1)问:根据这道题你收集到了哪些信息?
(让学生尝试用线段图表示)
(2)请学生根据线段图写出加法算式。
814+1142=1956或1142+814=1956
师:为什么用加法呢?
那怎样的运算叫做加法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是加法。)
(3)小结:把两个数合并成一个数的运算,叫做加法。(出示加法的意义)说明加法各部分名称。
2、理解减法的意义。
(1)能不能试着把这道加法应用题改编成减法应用题呢?
根据学生的回答,出示例1(2)(3)尝试用线段图表示:
(2)师:根据线段图写出两道减法算式,并说说这样列式的理由。
1956-814=1142或1956-1142=814
问:怎样的运算是减法?(小组讨论)
(根据这两个算式,结合已有的知识讨论并试着用语言表示)
(3)小结:已知两个加数的和与其中的一个加数,求另一个加数的运算,叫做减法。(出示减法的意义)说明减法各部分名称
三、探究、理解加法和减法之间的关系。
1.问:上面的这些算式,你觉得它们之间有什么联系?观察上述四道算式中数字位置间关系,思考加法和减法之间的关系。然后以小组的形式进行讨论。(小组讨论。个别汇报)
2.根据学生的汇报,出示:加数+加数=和被减数-减数=差
3.师归纳并小结:减法是加法的逆运算。(板书)
4.加法各部分之间的关系。
出示:814+1142=1956
814=1956-1142
1142=1956-814
问:观察算式,你能得到什么结论?
和=加数+加数
加数=和-另一个加数
5.减法各部分之间的关系。
出示:800-350=450
800=450+350
350=800-450
问:通过观察这组算式,你能得出减法各部分的关系吗?
观察这组算式讨论归纳得:
被减数=差+减数减数=被减数-差
6.练习“做一做”
四、总结
师:谁来说说我们这节课学习了些什么?你知道了什么呢?
五、布置作业
练习一4、5题。
板书设计
加、减法的意义和各部分间的关系
和=加数+加数差=被减数-减数
加数=和-另一个加数减数=被减数-差
被减数=差+减数
课题:乘、除法的意义和各部分间的关系
四年级下册教案数学人教版6
[课程标准要求]
课标对小数的性质这部分内容指出引导学生通过动手、观察、经历自主发现小数的性质的过程,并总结概括出小数的性质。自主发现是行为动词,动手、观察是行为条件,行为程度是指学生发现小数的性质,并总结概括出小数的性质。
[学情分析]
本课学习内容,看似容易,但理解起来有点难度。因此学生将在教师设计的量一量、说一说、比一比、涂一涂等活动中开展学习活动。通过合作交流、观察、总结发现小数的性质,并应用小数的性质化简和改写指定位数的小数。
[学习目标]
1、学生以小组合作为单位,通过动手操作、观察、比较、交流、归纳概述出小数的性质。
2、运用小数的性质能正确地化简、改写小数。
教学重点理解掌握小数的性质。
教学难点
探索发现并概括出小数性质的过程。
[评价任务]
通过练习和例3化简例4改写小数检验目标1、2的教学完成情况
[资源与建议]
1、教材分析:这部分内容是在学生学习了分数、小数的初步认识的基础上,进一步理解了小数的意义,认识了小数的计数单位,会熟练地读、写小数后教学的,本课的知识点不多,但学生理解起来有点难度,因此教材设计了让学生自主探究的学习内容,教材先通过例1和例2教学小数的性质,即让学生通过比较0.1米、0.10米、0.100米的大小,比较0.3和0.30的大小,引导学生归纳出小数的性质。然后,又安排例3和例4对小数的性质加以应用。运用一正一反两个例题,即一个是去掉小数末尾的“0‘把小数化简,一个是在小数末尾添上”0“把小数改写成指定位数的小数,来使学生学会小数性质的应用。学好这部分内容是为今后学习小数的四则运算打基础的。
2、教具:课件
学具:米尺,方格图,殊为顺序表
授课对象:四四班学生
授课地点:考务办公室
3、本课的学习按以下流程进行
4、本节课的重点是理解小数性质的含义,难点小数性质归纳的过程.突破方法:让学生在大量感性体验的基础上,自己试着归纳总结。
[学习过程]
一、创设情境,引导探索
1、谈话激趣
昨天因为买冰激淋的事难住了我女儿,大家来帮帮她好吗?同一种冰激凌金阳光超市标价2.5元,家家乐超市标价是2.50元。那家便宜些呢?2.5元是多少钱?2.50元呢?它们什么关系?(相等)(结合学生的回答板书)建议我女儿去那家买?(都行)通过比钱数我们知道了2.5等于2.50请观察这两个小数,2.5是怎样变成了2.50的?(在2.5的末尾添上0)
3、为什么在2.5元的末尾添个0大小不变呢?究竟可以添几个零呢?是不是什么数末尾添零大小都不变呢?请看老师这里有一个小数0.1我在它的末尾添一个零,它的大小变吗?添两个零呢?(不变)我们想个什么办法验证一下?(加个单位)加个米好吗?
二、合作探究,探索新知
(一)学生量出0.1米0.10米0.100米纸条的长度,通过比较发现它们长度相等。
下面我们以小组为单位来试一试,请看合作要求:
出示例1比较0.1米0.10米0.100米的大小。
要求:1、组长分工分别量出0.1米、 0.10米、0.100米纸条的长度。
2、把量出的0.1米、 0.10米、0.100米纸条的长度放在一起比一比看你们有什么发现?
(合作并比较)
0.1米是多长?(1分米)你是怎么想的?0.10米呢?(10厘米)你是怎么想的?0.100米呢?(100毫米)你是怎么想的?
汇报交流
生:我量的是0.1米。0.1米是十分之一米,也就是1分米。我量出1分米长的纸条就是量出了0.1米长的纸条。
生:我量的是0.10米。0.10米是10个百分之一米,也就是10厘米。我量出10厘米长的纸条就是量出了0.10米长的纸条.
生:我量的是0.100米。0.100米是100个千分之一米,也就是100毫米。我量出100毫米长的纸条就是量出了0.100米长的纸条
生:我们发现1分米、10厘米、和100毫米的纸条都一样长。
师小结(看课件)因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
同学们我们通过小组合作量0.1米、 0.10米、0.100米的长,得出0.1米=0.10米=0.100米。如果老师再给你一组小数你也能想办法比较它们的大小吗?
(二)学生通过在正方形纸上涂0.3和0.30比较发现它们大小相等。
出示例2:比较0.3与0.30的大小
师:你认为这两个数的大小怎样?(一样)想一下你可以用什么办法来比较这两个数的大小呢?老师给同学们准备了两个大小一样的正方形。请同桌两人合作利用它们试一试
合作要求;
1、两人分工分别在同样大小的正方形纸上涂出0.3和0.30。并互相说一说你是怎么想的?
2、把涂出的0.3和0.30的正方形纸放在一起比一比看你们有什么发现?
汇报:
(1)我涂的是0.3,它是把1个正方形平均分成10份,我涂3份,0.3就是3个十分之一.
(2)我涂的是0.30,它是把1个正方形平均分成100份,我涂30份,0.30就是30个百分之一.也就是3个十分之一.
(3)我的发现是0.3等于0.30
师:通过涂小数0.3和0.30涂出的什么相同?什么不同?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变。)从中你发现了什么?(0.3与0.30相等.)
(三)引导观察,得出小数的性质
指2.5元=2.50元;0.1米=0.10米=0.100米;0.3=0.30引导学生观察:我们来看这几组等式,从左往右观察2.50元同2.5元相比;0.10米同0.1米相比0.30同0.3相比。小数有什么变化?
生:我发现小数的最后面加了0。生:小数后面多了一个0(哪儿多个0呢?)那小数大小呢?
生:没有变化。0.100米同0.1米相比有什么变化?小数的大小呢?
通过以上观察你发现了什么?也就是板书:小数的末尾依次添上”0“
学生归纳:在小数的末尾添上”0“,小数的大小不变。
从右往左观察,2.5元同2.50元相比;0.10米同0.100米相比;0.3同0.30相比;0.1米同0.100米比小数又有什么变化呢?
生:小数后面依次少了一个0生:小数的末尾,板书:去掉”0“那小数的大小呢?生:没有变化。通过观察你又发现了什么?生:在小数的末尾去掉0,小数的大小不变
师:综合刚才的观察,你发现了什么?
师板书:小数的末尾添上0或去掉0,小数的大小不变。这就是小数的性质。
生齐读一遍.板书课题:小数的性质
(四)进一步探究,加深感知
师:无论添0还是去0都是在哪儿添或去才能使小数的大小不变呢?(小数的末尾)在整数的末尾添0去0数的大小变吗?(变)现在你知道为什么在2.5元的末尾添一个0仍然和2.5元相等吗?(2.5是小数)在1的.末尾添上0它的大小变不变呢?(变)为什么?(因为1是整数)整数有这个性质吗?(没有)在2.5这个小数5的前面添上0它的大小变吗?(变)为什么?(不是小数的末尾)哪儿才是小数的末尾?
注意:小数的性质是在”小数“的”末尾“添上0或去掉0,小数的大小不变。你认为小数的性质里哪些词很重要?(末尾)
齐读一边小数的性质.
根据小数的性质小数的末尾是可以添上”0“或去掉”0“的,并且小数的大小不变。请同学们来看。
练习
不改变数的大小,下面数中的哪些”0“可以去掉,哪些”0“不能去掉?为什么?先来看3.90米,(3.90 500 20.20问为什么?)
3.90米,0.30元,500米,1.80元
0.70米,0.04元,600千克,20.20米
三、联系生活,灵活运用
1.教师结合板书内容讲解性质的运用。
同学们像3.90米、0.30元等这些数根据小数的性质去掉它们末尾的0,小数的大小不变。根据小数的性质去掉小数末尾的0也就是把小数进行了化简。你能化简下面小数吗?
化简下面各小数:
例3 0.70 105.0900
小数里的其他零可以去掉吗?(不能)
一般计算时,遇到小数末尾有0,都要化简。来看下面这些数化简后分别是多少?
练习
(2)同学们根据小数的性质去掉小数末尾的0就把小数进行了化简。有时根据需要,我们还要根据小数的性质在小数的末尾添上0;把小数改写成指定位数的小数。
出示:例4不改变数的大小,把0.2、4.08改写成小数部分是三位的小数,怎样改写?
把3改写成小数部分是三位的小数,怎样改写?(想一想超市里2元的商品标价时还怎么标:2.00元)
提醒:把整数改写成小数形式,在整数的个位右下角点上小数点,再添上”0“。能不能在小数中间添零?不能,要使小数的大小不变只能在小数的末尾添”0“
请把这几个数改写成三位小数。
练习
应用小数的性质我们可以化简一个小数还可以对一个小数进行改写。请同桌两人讨论一下应用小数的性质时,要注意什么?
同桌讨论:应用小数的性质时,要注意什么?(无论添0还是去0都是在小数末尾)
请看这三个数0.70 4.08 0.310 0.20去掉0,数的大小怎样?4.08去掉0,会怎么样?0.310可以添上0吗?
四、全课总结
今天我们学习了什么内容?什么是小数的性质?小数的性质有什么用?应用小数的性质时,要注意什么?2.5的末尾可以添上多少个”0“呢?
五、看课本
我们今天学的内容在课本第58、59页,请把课本看一下把该画的内容画下来。
六、多层练习,巩固深化
(一)我是小法官(打”√“,错的打”ד)
1、把0.50 0.0600的小数点后面的”0“去掉,小数的大小不变。()
2、在5.3的末尾添上三个”0“,它的大小不变。()
3、一个数末尾添上”0“或者去掉”0“,大小不变。()
(二)把相等的数连起来。
2.70 4.400
31.0100 0.005
72.060 2.07
0.0050 31.01
4.40 72.60
(三)给下面的物品加上标签(以元作单位,用两位小数表示)。
水杯3元2角
铅笔6角
板书设计:
小数的性质
2.5元=2.50元
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
0.3=0.30
小数的末尾添上”0“或去掉”0“,小数的大小不变。
四年级下册教案数学人教版7
教学内容:
人教版数学第八册第一单元第13页例6及相关习题。
教学目标:
1、掌握0在四则运算的特性,理解0为什么不能做除数,提高学生计算的正确和概括能力
2、通过归纳分析总结0在四则运算中的特性,通过练习进一步掌握四则运算的特征。
3、通过学习进一步理解0在生活中的意义以及0在运算中的作用。
教学重点:
掌握0在四则运算中的特性,体会0在四则运算中的地位和作用。
教学难点:
理解0为什么不能做除数。
教学准备:
主题图口算卡片
教学过程:
一、创设情境,生成问题。
出示口算卡片
150+0=
43-0=
25-25=
0 +50 =
0×135=
0÷12=
1、让学生快速口算。
2、同桌互相说一说这些题目有什么特点?
(设计意图:教师根据教学内容的特点,从学生已有的知识出发,以问题的形式创设数学情境,目的是引发学生的思考,为新知的学习奠定基础。)
二、探究交流,解决问题。
1、回忆以前所学知识,想一想,你知道哪些有关0的运算?
(1)小组合作交流并举例。
(2)全班交流。
老师结合学生的概括,整理出板书内容。
一个数加上0,还得原数。例:5+0=5
一个数减去0,还得原数。 5-0=5
被减数等于减数,差是0。 5-5=0
一个数和0相乘,仍得0 0×5=0
0除以任何数都得0 0÷5=0
(设计意图:在低年级,学生刚开始学习加减法,就认识了0,掌握了有关0的加减法的计算。随着年级的增高,知识的扩展,在学习乘除法时又认识了0在乘除法运算中的特性,之后学生又经历了许许多多的实际计算,进一步掌握了0在四则运算中的特性,体会到0在四则运算中的地位和作用。因此这一环节要给学生留有充分的时间,让他们回忆、整理和概括有关0在四则运算中的特性。教学时,采用小组合作形式,大家在组内畅所欲言,然后在全班交流,从而得出结论。)
2、质疑
(1)老师提出问题:关于0的运算你还有什么想问或想说的吗?如果用0作除数结果会怎样?
板书:5÷0=□ 0÷0=□
小组交流、教师补充板书
0除以任何非0的数都得0。
0不能作除数。
(设计意图:0为什么不能做除数,这是本节课的难点。为了使教学突破这个难点,我结合教材提出问题“如果用0作除数,结果会怎样?”接着出示5÷0=□,0÷0=□两个算式,让学生通过分析说明观点,自己从验证过程中得出0不能作除数的结论。学生亲身经历知识的形成过程,从而不但掌握结论,而且理解结论的算理。)
三、巩固应用,内化提高。
1、算一算。
0+1=
0+0=
68-0=
23×0=
456-0=
78×0=
0×0=
78×1=
0÷56=
100-0=
2、填一填
(1)一个数加上0,还得();
(2)被减数与减数相同时,差是();
(3)一个数与0相乘,仍得();
(4)0除以一个()的数,还得0;
(5)0不能作()。
3、先说说运算顺序再计算。
58÷2×0 0÷14+63÷7
24÷(75-67)9+9×9-9
4、列式计算
(1)98加42除以14的商,和是多少?
(2)840减去140的差,再乘上0,积是多少?
(3)87减87的差除以78加22的和,商是几?
5、课本P15
(1)练习二第7、8题。
(设计意图:围绕学习内容设计不同形式的`练习,目的是帮助学生巩固知识,形成技能。同时注意培养学生应用知识的灵活性和创造性,同学之间可以互相学习和借鉴,教师要及时鼓励和提升,正确对待学生暴露出的学习的不足和疏漏,加强点拨指导,引导学生诊断矫正。)
四、回顾整理,反思提高。
同学们,通过这节课的学习,你有什么收获?关于0的运算你最想提醒自己或同伴些什么?你认为自己或同伴的表现怎样?
(设计意图:对课堂学习进行全面地回顾总结。在回顾知识的同时,对情感态度进行回顾总结。)
板书设计:
关于“0”的运算
一个数加上0,还得原数。例:5+0=5
一个数减去0,还得原数。5-0=5
被减数等于减数,差是0。 5-5=0
一个数和0相乘,仍得0 。 0×5=0
0除以非0的数都得0 。 0÷5=0
注意:0不能作除数。
教后反思:
本节课是让学生将有关0的运算知识系统化,了解0在四则运算中的特性。因此,我首先让学生回忆自己了解的一些有关0的运算,学生在小组内交流并举例,再结合学生的概括整理出要板书的内容,如一个数加上0还得原数,在此基础上,学生还必须举出例子来进行验证。教材中特别强调0不能作除数,那么0为什么不能作除数呢?这个问题的理解是本节课的难点。为了使教学突破这个难点,我结合教材提出问题“如果用0作除数,结果会怎样?”接着出示5÷0=□,0÷0=□两个算式,让学生通过分析说明观点,如有学生发现0÷0的商无论等于什么数,商和除数0的积都等于0,0÷0的结果有无数个。学生能自己从验证过程中得出0不能作除数的结论。
四年级下册教案数学人教版8
教学内容:
有括号的混合运算P9——P10
教学目标:
1、了解括号产生的必要性,掌握含有小括号、中括号算式的运算顺序。能准确规范计算带有括号的整数四则混合运算,感受数学符号的奇妙。
2、在交流、探究的基础上,能灵活运用所学的知识解决生活中简单的问题,并能准确表达解决问题时的思考过程。
3、在解决实际问题的过程中,养成认真审题、独立思考的学习习惯。
教学重点:
理解和掌握带有括号的四则混合运算的运算顺序。
教学难点:
灵活运用学过的知识解决实际生活中的简单问题。
教学准备:
实物投影、课件
教学过程:
一、导入新授
1、说一说下列算式的运算顺序,并计算。
36×4+28 65- 25+40 12×5÷6 172 - 42×3 24×3+32×5
引导学生明确:我们学过的加、减、乘、除法四种运算叫四则混合运算。
分别让学生说一说没有括号的混合运算的运算顺序,再进行计算。
2、导入:刚才,我们复习了没有括号的混合运算的运算顺序,如果在算式里有括号,又按什么顺序计算昵?这就是这节课要学习的内容。
板书课题:有括号的混合运算。
二、探索发现
第一环节教学例4
1、教师出示教材例4的算式:96÷12+4×2。
(1)观察算式,让学生说一说这个算式中包括几种运算,运算顺序是怎样的。
(2)学生独立进行计算。
指名板演:96÷12+4×2
=8+8
=16
(3)引导学生思考:如果要先算加法,再算除法,最后算乘法,应该怎么办?
教师适时介绍:可以利用小括号改变运算的顺序。
启发学生思考:只要在算式中加上一个小括号,就可以满足要求,即:96÷(12+4)×2
学生独立进行计算。指名板演
96÷(12+4)×2
=96÷16×2
=6×2
=12
师:在这个算式中,小括号起什么作用?(改变运算的顺序)
(4)介绍中括号的知识。
教师介绍中括号的写法,及含有中括号的算式的运算顺序。
在含有括号的算式里,要按照从里到外的顺序,先算小括号里面的,再算中括号里面的,最后算括号外面的。括号内的运算,要按“先乘、除后加、减,同级运算依次算”的顺序进行。
(5)学习计算带有中括号的算式。
出示算式:96÷[(12+4)×2]。
师:谁来说一说这个算式的运算顺序是怎样的?
(先算小括号里的加法,再算中括号里的乘法,最后算括号外面的除法。)
学生独立计算,汇报结果。指名板书
96÷[(12+4)×2]
=96÷[16×2]
=96÷32
=3
(6)对比中强化认识。
比较96÷12+4×2、96÷(12+4)×2和96÷[(12+4)×2]这三个算式,你发现了什么?
通过比较,引导学生发现:这两个算式中的数字和包含的运算都相同,但是运算的顺序不同,导致计算结果也不相同。
教师强调:同学们在计算时,一定要先弄明白算试的运算顺序,再进行计算。
第二环节教学例5
课件出示教材例5情境图。
1、阅读与理解。
师:说一说你从图中获得了哪些数学信息?
小组讨论交流得出:一共有30人要租船游玩,每艘小船20元,可以坐4人;每艘大船35元,可以坐6人。教师提出问题:怎样租船最省钱?
2、分析与解答。
组织学生在小组内思考与交流,教师参与学生的讨论,交流后进行反馈
(1)方案一:都租小船。
30÷4=7(只)……2(人)7+1=8(只)20×8=160(元)
需要租8只小船,共花160元。
(2)方案二:都租大船。
30÷6=5(只)35×5=175(元)
需要租5只大船,共花175元。
师:在这两种方案中,方案一更省钱。同学们想一想,方案一中的租船方案是否还能进行优化更加省钱呢?
师生交流后明确:方案一中,全租小船,有一条船只坐了2人,没坐满。可以把这2人和另一条小船的4人都安排坐条大船,这样更省钱。
(3)方案三:组合租船。
6条小船:20×6=120(元)1条大船:35元
共花:120+35=155(元)
3、回顾与反思。
师:我们是怎么解决刚才这个问题的`?
师生交流后明确:我们是先假设全部都租小船或大船,然后再进行调整,保
证每艘船都不留空位,还要考虑每艘船的租金。
本题中,因为每艘小船的个人平均租金是20÷4=5(元),而每艘大船的个人平均租金是35÷6≈6(元),所以尽量租小船,这样会更省钱。
三、巩固发散
1、先说一说下列各题的运算顺序,再计算。
25×[(470- 320)÷15] [35+(62-15)]×32
2、指导学生完成教材“做一做”。
学生独立计算,教师巡视,个别辅导。完成后,集体订正。
集体订正时,让学生说说每题的计算顺序。
四、评价反馈
师:这节课,我们知道了小括号、中括号有什么作用?在含有括号的算式里应按怎样的顺序进行计算?
师生交流后明确:小括号、中括号能改变运算的顺序;在既有小括号又有中括号的运算中,要先算小括号里面的,再算中括号里面的,最后算中括号外面的
板书设计:
有括号的混合运算
一个算式里,既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。
租船
(1)方案一:都租小船。30÷4=7(只)……2(人)7+1=8(只)20×8=160(元)
(2)方案二:都租大船。30÷6=5(只)35×5=175(元)
(3)方案三:组合租船。6条小船:20×6=120(元)1条大船:35元
共花:120+35 =155(元)
四年级下册教案数学人教版9
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:小数的性质。
教学难点:理解小数的性质。
教具学具准备:课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的`性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
0.3=0.30
1.2=1.20
四年级下册教案数学人教版10
教材分析:
(1)知识体系:
(2)本册教材有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。但是难点集中,教学中要适当进行分割、补充。真正构建比较完整的知识结构。
教学目标
1.引导学生探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教材简析
1.有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。
2.从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。
3.重视简便计算在现实生活中的'灵活应用,有利于提高学生解决实际问题的能力。
教学重点:探索和理解加法交换律、结合律,乘法交换律、结合律和分配律,能运用运算定律进行一些简便运算
教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算
教学策略
1.充分利用学生已有的感性认识,促进学习的迁移。
2.加强数学与现实世界的联系,促进知识的理解与应用。
3.注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
第一课时
教学内容:加法交换律和结合律【例1,例2】
教学目标
1.结合具体的情境,引导学生认识和理解加法交换律和结合律的含义。
2.能用字母式子表示加法交换律和结合律,初步学会应用加法交换律和结合律进行一些简便运算。培养学生观察,比较,抽象,概括的初步思维能力。
3.体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。
教学重点:认识和理解加法交换律和结合律的含义。
教学难点:引导学生抽象概括加法交换律和加法结合律。
教学过程:
一、创设情境
1. 引入谈话。
在我们班里,有多少同学会骑车?你最远骑到什么地方?
骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!
(多媒体演示:李叔叔骑车旅行的场景。)
2. 获得信息。
问:从中你可以得到哪些信息? (学生同桌交流,然后全班汇报。)
问题是什么?
3. 解决问题。
问:能列式计算解决这个问题吗? (学生自己列式并口答。)
二、探索规律
1. 加法交换律。
(1)解决例1的问题。 根据学生回答板书:
40+56=96(千米) 56+40=96(千米)
问:两个算式都表示什么?得数怎样?○里填什么符号? 40+56○56+40,
(2)你能照样子再举几个例子吗?
(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。
(4)反馈交流。 两个加数交换位置,和不变。
(5)揭示定律。
问:①知道这条规律叫什么吗?
②把加数换成其他任意的数,交换律还成立吗?
③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)
④交流反馈,然后看书:看看课本上的小朋友是怎么说的。
⑤根据加法交换律对口令。
师:25+65=______ 78+64=______
⑥完成课本第18页下面的“做一做”1
2. 加法结合律。
多媒体展示:李叔叔三天骑车的路程统计。
(1) 找出信息解决问题。
问:你能解决李叔叔提出的问题吗? 学生独立完成后交流。
多媒体展示线段图:根据学生列出的不同算式,表示三天路程的线段先后出现。
问:通过线段图演示,你们发现什么?(不论哪两天的路程先相加,总长度不变。)
我们来研究把三天所行路程依次连加的算式,可以怎样计算:
比较 88+104+96 88+104+96
=192+96 =88+200
=288 =288
为什么要先算104+96呢?(后两个加数先相加,正好能凑成整百数。)
出示(88+104)+96○88+(104+96),怎么填?
(2)你能再举几个这样的例子吗?
问:观察比较这些算式,说说你发现了什么秘密?(鼓励学生用自己的话来说。)
(3)揭示规律。
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,这就是加法结合律。
(4)用符号表示。(学生独立完成,集体核对。)
(▲+)+●=____+(____+____)
(a+b)+c=____+(____+____)
(5)问:①用语言表达与用字母表示,哪一种更一目了然?
②这里的a、b、c可以表示哪些数?
(6)完成P18做一做2
三、练习巩固
1. 指出下面哪几道题运用了加法运算定律,分别运用了什么运算定律。
(1) 验算:(运用了加法交换律)
(2)用“凑十法”7+9=6+(1+9)(运用了加法结合律)
(3)教材练习五
四、小结
1. 今天我们发现了哪些数学规律?
2. 这些运算定律是
四年级下册教案数学人教版11
学习内容:人教版小学数学教材四年级下册第13~16 页。
学习目标:
1. 经历从不同方向观察拼摆的物体的过程,能辨认从不同位置观察到的平面图形的形状。
2. 经历从同一位置观察由相同个数的小正方体拼摆的物体,看到的形状可能相同也可能不同。
3. 通过观察、操作、想象、判断等活动,培养学生的空间想象力和推理能力。
学习重点:正确辨认从上面、前面、左面观察到的物体的形状。
学习难点:体会由4 个相同的小正方体拼摆的物体的.形状各不相同,所观察的平面图形有时相同,有时不同。
学习准备:正方形木块学具、课件等。
学习过程:
一、复习导入
出示情境图及习题,让学生思考并作答。(如图)
小狗看到的是图( );
小猴看到的是图( );
小猫看到的是图( );
小鸟看到的是图( )。
设计意图:回顾知识,将相关知识点链接出来,对本节课所学知识有引导作用。
二、合作探究
1.出示P13页例题,提问:“你是怎么想的?”
学生仔细思考,并小组讨论解答,说出自己的思路。
2.教师引导学生进行归纳总结,课件显示主要的分析思路,以及详细的解题过程。
提示:从某一方向观察一个物体,看到的形状就是观察到的这个物体的面的平面图形。
3.P13“做一做”
学生讨论回答,老师批改。
4.出示例题P14,让学生观察
“你能观察到什么?”
5.让学生分组,用手里面的正方体木块摆成课本上的三种形状,并分别从左面、上面和前面来观察物体所看到的形状,相同之处和不同之处记录下来并讨论。
①相同之处
②不同之处
③分别画出3个物体从同一角度观察得到的平面图形
6.讨论总结
从同一位置观察由相同个数的小正方体拼摆的物体,看到的形状有的相同、有的不同。
设计意图:通过观察、操作、想象、判断等活动,培养学生的空间想象力和推理能力
三、巩固应用
出示两道习题
1、基础性习题
2、拔高性习题(详见课件)
设计意图:通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。
四、课堂小结
本单元学习后你有什么收获?
设计意图:让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。
四年级下册教案数学人教版12
教学总目标:
1. 使学生认识自然数和整数,掌握十进制计数法,会根据数级正确地读、写含有三级的多位数。
2. 使学生理解整数四则运算的意义,掌握加法与减法、乘法与除法之间的关系。
3. 使学生掌握加法和乘法的运算定律,会应用它们进行一些简便运算;进一步提高整数口算、笔算的熟练程度。
4. 使学生理解小数的意义和性质,比较熟练地进行小数加法和减法的笔算和简单口算。
5. 使学生初步认识简单的数据整理的方法,以及简单的统计图表;初步理解平均数的意义,会求简单的平均数。
6. 使学生进一步掌握四则混合运算顺序,会比较熟练地计算一般的三步式题,会使用小括号,会解答一些比较容易的三步计算的文字题。
7. 使学生会解答一些数量关系稍复杂的两步计算的应用题,并会解答一些比较容易的三步计算的应用题;初步学会检验的方法。
8. 结合有关内容,进一步培养学生检验的习惯,进行爱祖国、爱社会主义的教育和唯物辩证观点的启蒙教育。
教学的主要知识及结构:
本册教材包括下面一些内容:混合运算和应用题,整数和整数四则运算,量的计量,小数的意义和性质,小数的加法和减法,三角形、平行四边形和梯形。
学法及能力培养的主要方向:
1. 培养学生的抽象、概括能力。
2. 培养学生的分析综合能力。
3. 培养学生的.判断推理能力。
4. 培养学生的迁移类推能力。
5. 引导学生揭示知识间的联系,探索规律。
6. 培养学生思维的灵活性。
7. 注意培养学生学习数学的兴趣良好的思想品德和学习习
惯。 教学的重点:
混合运算和应用题是本册书的一个重点。
第一单元
混合运算和应用题
整体感知
第一单元内容分为三节,第一节:混合运算;第二节:应用题;第三节:数据整理和求平均数。
混合运算中的三步试题是在第五、六册已学过三步试题的基础上进行教学的。本单元的三步试题,是小括号内含有两级运算的三步式题,通过学习,进一步巩固混合运算的运算顺序。在教学中,要充分利用三步式题与两步计算式题间的联系,强化运算顺序,让学生在掌握运算顺序的基础上独立计算,并逐步提高运算的正确率与运算速度。三步计算文字题是在两步计算文字题的基础的扩展,以提高学生理解数学语言并用算式表达的能力和列综合算式的能力,进一步强化运算顺序。计算三步文字题时,要着重从分析文字叙述人手,先确定最后一步是什么运算,再根据数量关系向前推导,确定出先算什么,再算什么,哪一部分在前,哪一部分在后,以及括号怎样使用等,直到列出综合算式。 应用题是本单元的重点,其中两步计算的连乘和连除应用题与第六册学习
过的连乘和连除应用题有所不同,特点是未知量可以随两个量的变化而变化。教学时,要从求未知量与两个已知量的联系人手,分析数量关系,得出两种解题思路,进而列式解答。连乘应用题与连除应用题从解题思路上是互逆的,教学时,应加强两种类型题的联系,通过对比练习强化数量关系,并要求会用两种方法解答,能列综合算式解答。
应用题部分还安排了比较容易解答的三步计算应用题,这是原来两步计算应用题的发展。这部分内容离学生生活实际较近,数量关系简单,学生利用两步应用题的基础,通过类推,可以比较容易掌握三步应用题的分析解答方法。教学时,可以从两步应用题引入教学,让学生利用两步计算应用题的解题思路来分析主要数量关系,从与两步应用题的对比中确定运算步骤。应用题教学中,还要注意培养学生利用线段图表示数量关系的能力。同时,教材还介绍了检验的方法,应注意培养学生养成检验的良好习惯,但检验方法只要求学生初 步掌握,不要求写检验过程。数据整理和求平均数是统计的初步知识。教材在以前渗透统计思想的基础上,从本册开始介绍统计的初步知识。数据整理包括简单的统计表和条形统计图,通过教学,要使学生对数据整理有初步认识,会看简单的统计表和统计图,能把不完整的简单统计表或条形统计图填写完整。求平均数是一种统计方法,要着重让学生理解平均数的含义,注意与平均分的区别,初步学会简单的求平均数据的方法。本单元的统计知识都是最基本的,要求学生理解即可。
在本单元教学中,要充分利用新旧知识间的联系,联系学生的生活实际,通过知识间的迁移、类推、比较、拓展,将新知识点与学生原有知识体系联系起来进行教与学。另外,在教学过程中,教师要充分调动学生自主学习的积极性,放手让学生去探究,要多动手、多讨论、多交流,尽量引导学生自己得出结论。要调动学习有困难学生的学习兴趣,使学生感受到学习数学的乐趣,特别是学习应用题的乐趣。此外,在知识学习的同时,要注意结合教学内容,培养学生的能力,包括计算能力、分析判断能力、综合思维能力、推理能力及动手操作能力等。
混合运算
教学内容:教科书例1及“做一做”练习一第1、2题。
一、素质教育目标
(一)知识教学点
1.初步掌握括号内含有两步计算式题的运算顺序。
2.能够计算较复杂的三步式题。
(二)能力训练点
培养学生类推能力及计算能力。
(三)德育渗透点
教育学生计算和做事要仔细认真。 ’
(四)美育渗透点
使学生感悟到数学知识内在联系的美,提高审美意识。
二、学法引导
指导学生运用已有经验,合作学习,探索新知。
三、重点、难点
1.教学重点:理解小括号内含有两级运算的三步运算式题的运算顺序。
2.教学难点:准确计算三步运算式题。
四、教具学具准备
卡片、 课件
五、教学步骤
(一)铺垫孕伏
1.练习:(卡片)
30+30÷3 42×3 80÷16+2
12×5—60÷2 8×5×10 120÷4×5
2.说出下列各题的运算顺序 同桌各选一题,互相说一说:题中含有哪些运算,应先算什么,再算什么,并说出为什么按这样的顺序进行计算? 订正并强调:一个算式里,如果有加减法,又有乘除法,要先算乘除,后算加减;含有括号的算式,要先算括号里面的运算。
3,计算:
32+540÷18 100—(32+30)
同桌互说运算顺序,并口算出结果。
(二)探究新知
1.引入新课:
观察刚才的两道题,能不能把这两道题合并成一道式题呢?(教师边提问边用色笔在30和540÷18下面画上线。)
学生组题,老师板书:100—(32+540÷18)
指出这就是我们今天要研究的混合运算的例题1。
板书课题: 混合运算 例1
(抓住新旧知识的联系,运用知识迁移类推,学会知识。)
2.对照例1与复习题,讨论:例1与以前我们学习过的混合运算题有什么不同?
引导学生通过观察,讨论得出结论:例1的小括号内含有两级运算。 教师引导:这道题中的小括号内含有除法和加法两级运算,应按什么顺序进行计算呢?先算什么?再算什么?最后算什么?
3,学生自己直接试做例题,做完后同桌对照,并互相订正。
4.指名学生汇报自己的计算过程,形成板书:
例1 100—(32+540÷18)
四年级下册教案数学人教版13
教学内容:课本第14页例3,练习四第1-3题,三步计算应用题(一)。
教学目标:
使学生熟练掌握数量关系及解题思路,会解答简单的两、三步计算的应用题。提高学生分析、推理能力。
教学重点、难点:
让学生掌握数量关系、学会分析问题的方法,既是教学的重点,也是学习的难点。
教学过程:
一、复习准备。
1.板演:
新镇小学三年级有4个班,每个班40人;四年级有114人。三年级和四年级一共有多少人?
2.思路训练。
全班同学口答:
(1)根据条件补充问题,并说出数量关系。
有5个教室,每个教室有8盏灯?
王平同学每天早晨跑500米,跑了5天?
8个打字员共打字1600个?
三年级有160人,四年级有114人?
(2)根据问题找条件,并说出数量关系。
平均每人采集树种多少千克?
火车速度是汽车速度的几倍?
香蕉比桔子少多少筐?
买足球共用多少元?
订正第1题,说说解题思路,是怎样分析的。
二、学习新课。
1.新课引入。
复习题是两步计算的应用题,如果问题不变,改变其中的一个条件,使其为三步计算的应用题,应该怎样表示?(学生可能想到,四年级人数不直接给出,改为四年级比三年级少46人。这样改是合理的,但它不是三步计算题了,因此只能改成:四年级有3个班,每班38人。)
教师点明:这就是我们今天要学习的应用题。(板书课题:三步应用题)
2.出示例3。
新镇小学三年级有4个班,每班40人,四年级有3个班,每班38人。三年级和四年级一共有多少人?
(1)审题、理解题意。
学生读题后,说出已知条件和问题。
师生共同完成线段图:
每班40人
三年级:
每班38人共?人
四年级:
(2)分析数量关系。
让学生结合线段图自己分析,并独立列式解答,然后集体交流,说出解题思路和过程。
分析:从最后的问题入手分析,要求三、四年级共有多少人。必须知道三、四年级各有多少人。但题中这两个条件都没有直接告诉,因此第一步先算三年级有多少人?40×4=160(人);第二步算四年级有多少人?38×3=114(人);第三步再把这两个年级人数合并起来,160+114=274(人)。就是要求的问题,即三、四年级的总人数。
教师板书:
①三年级有多少人? 40×4=160(人)
②四年级有多少人? 38×3=114(人)
③三年级和四年级一共有多少人? 160+114=274(人)
答:三年级和四年级一共有274人。
刚才的思考方法是从问题入手,找出所需要的条件,然后确定先算什么,再算什么,最后算什么。
大家想一想,如果从题目的条件入手分析,那么题目中哪两个条件有密切关系?可以得到什么新的数量?
(三年级有4个班,每班40人,可以求出三年级有40×4=160(人);四年级有3个班,每班38人,可以求出四年级有38×3=114(人);最后把两个年级人数合起来,160+114=274(人)就是题中要求的问题。)
3.反馈练习。
如果例3的已知条件不变,把问题改成三年级比四年级多多少人,应该怎样解答?
全班同学做在练习本上。
订正时说明是怎样想的。
小结:
我们解答应用题时,在认真审题理解题意的基础上,最重要的是分析数量关系,掌握分析方法,既要根据条件想问题,得到新的已知数量,也可以根据问题找条件,哪个条件是已知的',哪个条件是未知的,因此要先把未知的条件求出来。这两种分析方法是要经常用到的所以要切实掌握。
三、巩固反馈。
1.独立解答。
体育老师买了3个排球,每个40元,还买了2个篮球,每个62元,小学数学教案《三步计算应用题(一)》。一共用了多少元?(先用线段图表示出已知条件和问题,再列式解答)
解答后,学生说说解题思路,并订正。
2.比较题。
(1)菜场运来黄瓜8筐,每筐25千克,茄子12筐,每筐20千克,运来的黄瓜和茄子共有多少千克?
(2)如果改变其中一个条件,茄子12筐,改为8筐,其余条件和问题不变,应该怎样解答?
学生会出现的两种解法:
25×8+20×8 (25+20)×8
=200+160 =45×8
=360(千克) =360(千克)
请同学们比较一下这两种解法的解题思路是什么?哪种解法比较简便?
通过讨论明确,有些应用题,由于解题思路不同,解题方法就不同,而且计算的步数也不一样。有的三步计算题可以用两步计算,这样使得计算比较简便。
同学们想一想,(1)题能否用两步计算?为什么?(从而明确由于两种蔬菜的筐数不一样,也就是当求两个积的和(或差)时,没有相同的因数,就不能用简便方法计算。)
3.粮店运来25包大米,共重2500千克,运来40袋面粉,共重20xx千克,一包大米比一袋面粉重多少千克?
四、全课总结:
我们今天学习的复合应用题,都是由几个简单的一步应用题组合而成的。解答是首先要理解题电,在此基础上分析数量关系是关键,无论采用哪种分析方法,都要找出条件与问题之间的关系,计算时要养成认真,细心的习惯。
五、作业。
练习四第1~3题。
附板书设计:
三步应用题(一)
例3 新镇小学三年级有4个班,每班40 菜场运来黄瓜8筐,每筐25千克
人,四年级有3个班,每班38人。三年 茄子8筐,每筐20千克,运来的
级和四年级一共有多少人? 黄瓜和茄子共多少千克?
每班40人 解法一:(1)运来黄瓜多少千克?
三年级: 25×8=200(千克)
每班38人共?人 (2)运来茄子多少千克?
四年级: 20×8=160(千克)
(1)三年级有多少人? (3)共运来黄瓜、茄子多少千克?
40×4=160(人) 200+160=360(千克)
(2)四年级有多少人? 解法二:(1)每筐黄瓜和茄子共重多少千克?
38×3=114(人) 25+20=45(千克)
(3)三、四年级共有多少人? (2)运来黄瓜和茄子共重多少千克?
160+114=274(人) 45×8=360(千克)
答:三、四年级共有274人。 答:运来黄瓜和茄子共重360千克。
四年级下册教案数学人教版14
教学内容
教材第73页的内容及第74页练习十七的第5—10题。
教学目标
一、知识与技能:
结合具体情境,使学生经历探索小数位数不同的小数加、减法计算方法的过程,体会小数加、减法和整数加、减法在算理上的联系。
二、过程与方法:
经历探索小数位数不同的小数加、减法计算方法的过程,体会小数加、减法和整数加、减法在算理上的联系。
三、情感、态度、价值观:
学会分析、比较、归纳和类比的思维方法。
教学重点理解小数加、减法的算理(即相同数位对齐的道理),掌握被减数的位数比减数少时,末尾添零补足后退位再减的计算方法
教学难点掌握被减数的位数比减数少时,末尾添零补足后退位再减的计算方法
教学准备多媒体
教学方法观察法、讲解法,合作交流法、探究法。
教学过程师生互动备注
一、情境导入
师:同学们我们学过了整数的进位加法和退位减法,那现在谁来说说计算方法呢?
生:加法:相同数位对齐,从个位加起,满十向前一位进1;减法:相同数位对齐,从个位减起,如不够向前一位借1当十再减。
师:说得真好!再整数加减的基础上,今天我们就来学习特殊的小数加、减法。(板书)
二、自主探究
1、特殊的小数加法。(出示情境图)
师:观察情景图,你能找出所求问题和已知条件吗?
生1:已知《数学家的故事》的单价是6.45元,》神奇的大自然》的单价是8.3元。
生2:所求的问题是买这两本书一共花多少钱?
师:你会求两本书的总价吗?(学生独立完成,小组交流,讨论) 生:已知这两本书的单价,求买这两本书的总价,就是求这两本书的单价和,即求6.45与8.3的和,用加法计算,列式为6.45+8.3
师:你会计算与解答吗? (学生独立完成,小组交流,讨论)
生:6.45元表示6元4角5分,8.3元表示8元3角0分,求6.45与8.3元的和时,把相同单位的数相加即可,即8+6=14(元)4+3=7(角)、5+0=5(分),所以6.45+8.3=14.75(元)
师:你会列竖式计算吗?
生:根据上面的分析,用竖式表示为: (上板演示)
答:买这两本书需要14.75元。
师:列竖式时,应该注意什么? 生:把小数点对齐,也就是把相同的数位对齐。
2、特殊的小数减法。
师:根据上面的情境图,你能提出一个用减法解答的数学问题吗? 生:《数学家的故事》比《神奇的大自然》便宜多少钱?
师:谁能解释一下“便宜多少钱”是什么意思?
生:求“便宜多少钱”就是求《数学家的故事》的单价比《神奇的大自然》的单价少多少钱。
生:还可以说求《神奇的大自然》的单价比《数学家的故事》的单价多多少钱。
师:谁能结合题意具体说说?
生:求《数学家的故事》的单价比《神奇的大自然》的单价少多少钱,就是求6.45比8.3少多少或者说求8.3比6.45多多少,求一个数比另一个数少(多)多少,用减法计算,列式为8.3-6.45。
师:你会计算与解答吗? 生:8.3元表示8元3角0分,6.45元表示6元4角5分,求8.3元比6.45元多多少钱,用0.30元减去0.45元,是不够减的.,先拿出一个1.00元,用1.00元减去0.45元,得0.55元,再用0.55元加上0.30元等于0.85元,接着用7.00元减去6.00元等于1.00元,所以最后结果是1.00元+0.85元=1.85元。
师:上面这一过程你可以用竖式来表示吗? (演示给学生看)
8.30 -6.45= 1.85(元)
师:列竖式时,你遇到了什么困难?
生:我是按照整数的退位减法来计算小数的退位减法的,不同的是要把小数点对齐
三、探究结果汇报
师:通过解决上面的问题,特殊的小数加法竖式应该怎样计算? 生:列竖式计算位数不同的小数加法时,把小数点对齐,也就是相同的数位对齐,然后按照整数加法的方法来计算。
师:小数减法呢?
生1:计算小数减法时,哪一位上不够减就要从前一位借1当十再减。 生2:小数部分的位数不够时,可以先根据小数的性质改写成位数相同的小数后,再按照整数加、减法的方法进行计算。
师:你能用自己的语言说说怎样计算特殊的小数加、减法吗?
生:(1)小数点对齐,也就是相同数位对齐。
(2)哪一位相加满十,就要向前一位进1,哪一位不够减,要从前一位借1当十再减。
(3)小数部分的位数不够减时,可以先根据小数的基本性质改写成位数相同的小数后,再进行加、减法的计算。
四、课堂小结
师:通过本课的学习,你有哪些收获?
生1:位数不同的小数加、减法的算理与整数加、减法的算理相同,只有相同单位的数才可以相加减。
生2:我学会了类比的思维方法。
五、巩固练习
练一练: 先说出运算顺序,再计算.
185.07-15.3+94.3-4.309 9.26-〔8.9-(3.96+1.3)〕
22.8+5.23-9.125+14.75 32.5-(5.07+6.13)+8.25
六、布置作业
解决问题:
(1)根据下图,请你说说肖红跳过了多少米?
(2)地球表面积是5.1亿平方千米,其中陆地面积是1.49亿平方千米。海洋面积比陆地面积多多少亿平方千米?
板书设计特殊的小数加、减法
把小数点对齐,也就是把相同的数位对齐,从低位算起。
哪一位相加满十,就要向前一位进1。
哪一位不够减,要从前一位借1当十再减。
小数部分的位数不够减时,可以先根据小数的基本性质改写成位数相同的小数后,再进行加、减法的计算。
教学反思在分析数据的同时提出数学问题,由熟悉的“生活”情境引发问题,发挥学生积累的竞赛经验,提出问题并解决问题,学生的探索必然是积极主动的,从而对小数加减法作出不同水平的解答。
四年级下册教案数学人教版15
教学内容:
九年义务教育人教版小学数学四年级下册第39页的内容以及相应的练习。
教学目标 :
1.学会运用小数的性质把一些小数化简或进行改写。
2.培养学生自主提出问题、自主解决问题的能力以及合作精神、实践能力和创新意识。
3.激发学生对数学的兴趣,引导学生体会数学与生活的联系。
教学重点: 运用小数的性质把一些小数化简或进行改写。
教学难点:掌握在小数部分什么位置添上“0”或去掉“0”,小数大小不变。
教学过程 :
一、温故知新
(同学们新课前我们先来复习旧知识,有没有信心,有,好。抢答,比一比谁又对又快!)
1.抢答。
10×47= 91÷13= 450÷50= 25×40= 360÷6=
36×20= 20×30= 125×8=
2.完成下列填空。
(1)0.58它是由( )个0.1和( )个0.01组成的。
(2)0.045里有( )个0.001
3.什么叫小数的性质?
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
同学们已经掌握了小数的性质,但是小数的性质应用非常广,大家想不想知道,想,那好,这节课我们一起来学习小数性质的应用。板书课题。
二、探究新课
1.出示学习目标
(下面我们先来明确这节课的学习目标,集体读一读)
(1)学会应用小数的性质对小数进行化简。
(2)学会应用小数的性质对小数进行改写。
2. 自学探究,合作交流。(课本第39页的例3和例4)
接下来请同学们结合自学要求,自学课本第39页例3、例4的内容,自学结束后,四人小组相互交流自己的发现,比一比,谁最善于思考,善于发现。
自学例3并思考:
(1)化简小数的依据是什么?
(2)怎样化简0.70和105.0900?
(3)化简小数的方法是什么?
(4)化简时,小数里的其他0可以去掉吗为什么?
自学例4并思考:
(1) 改写小数的依据是什么?
(2)不改变数的大小,怎样把0.2、4.08、3写成三位小数?
(3)不改变数的大小,改写一位、两位三位小数的方法是什么?
3. 展示智慧,分享快乐。
(好,自学交流结束,现在我们来展示你的智慧,分享你的快乐!)
例3
(1)化简小数的依据是什么?
(2)怎样化简0.70和105.0900?
(3)化简小数的方法是什么?
化简小数的方法:依据小数的性质,去掉小数末尾的0。
(4)化简时,小数里的其他0可以去掉吗?为什么?
例4
(1) 改写小数的依据是什么?
(2)不改变数的大小,怎样把0.2、4.08、3改写成三位小数?
(3)不改变数的大小,把一位、两位小数、整数改写三位小数的方法是什么?
不改变数的大小,把一位、两位小数、整数改写三位小数的方法
原是一位小数,在它的末尾添上2个0。
原是两位小数,在它的末尾添上1个0。
原是整数,在它的右下角点上小数点再添上3个0。
4.举例说明应用小数的性质时,要注意什么?
(同学们对化简小数,改写小数的方法掌握得真不错,可是老师还有一个问题,应用小数性质时要注意什么?举例子说明一下)
要注意小数的中间或末尾不能去掉0,否则会改变小数的大小。
三、巩固提高。
(下面大家能不能应用刚才学到的知识,去完成下面的练习?)
1. 化简下面各数。(口答)
0.40= 1.850= 2.900=
0.80= 12.000= 5.0100=
2. 不改变数的大小,把下面各数写成三位小数。(口答)
0.9= 30.04=
14= 0.15000=
3. 判断。
(1) 在数点的后面添上0或去掉0,小数的大小不变。( )
(2) 0.2元与0.20元相等。( )
(3 ) 0.8与0.80大小相等,意义也相同。( )
(4.) 4.0808可以化简成4.88。( )
4. 用3、3、0、0这几个数学和小数点“.”组数,写出一个符合要求的小数。
(1)可以去掉一个0而大小 不变的小数。( )
(2)可以去掉两个0而大小 不变的小数。( )
(3)一个0都不能去掉的小数。( )
四、全课总结。
(这节课同学们都学习得很认真,收获肯定不少,谁来分享你的收获?)
通过这节课的学习,说说你有什么收获?
五、测评提升。
完成《测评》29页第一、二、三大题。
六、板书设计
小数性质的应用
例3 化简。
0.70 = 0.7
105.0900 = 1.05.09
例4 改写
0.2 = 0.200
4.08 = 4.080
3 = 3.000
教学反思
数学来源于生活,应用于生活。学生学习数学的目的是要学会学习的方法,在学习的过程中不断提高自己的思维能力。在本节课的设计和教学中,我提供了生活中小数的数据,让学生再次感受了小数的实际意义,激发了学生探究新知的欲望。通过自学,掌握如何化简小数,如何把整数和小数改写成指定位数的小数,学会解决实际问题。整节课学生思维活跃,表现积极,自学反馈和巩固练习完成质量高。反思自己与学生的活动过程,有了如下感悟。
一、吃透教材,读懂学生
要上好一节课,要让学生的学习既轻松又愉悦,首先必须深读教材,在研究中找到新旧知识的连接点,确定所研究知识在教材体系中的位置和作用,同时,教师还必须研究孩子的年龄特征和心理特点,分析学生的已有生活经验和知识基础,在此基础上制定适切学生和教学内容实际的教学目标,从而确定恰当的有利于探究活动开展的教学方法。
二、创设情境,激发探究欲望
在设计并执教了《小数性质的应用》后,我认为传统的好的导课方式我们都可以用,关键是看所探究的是什么知识,我们可以根据探究内容的特点和学生的已有经验和知识基础选择或创新导入方式,既可以创设生活情境引入,也可以开门见山直奔主题,还可以谈话揭题,游戏导入……比如,基于四年级学生在学习本节内容之前,已经学习了小数的意义和小数的读法、写法,也学习了小数的性质,对小数已经有了进一步的认识,我就选择了创设情境,激发学生认知冲突的方式导入新课。这里所创设的情境既复习了旧知,又使学生产生了新的认知矛盾,调动了学生探究知识的积极性,为新知的学习打开了学生的思维。
三、自主看书,细化学法指导
如何指导学生自学?这是我们摸索过程中的一个难点。在尝试以自学为主课堂教学实践过程中,我们教师所提供的学法指导往往是大而空,不符合学生的实际,因此,我们在课堂上呈现的.学法提示多数形同虚设。我认为,学法指导也应该在研究教材和学生的基础上,定性探究内容的特点和确定学生的生活经验与知识基础,然后才能确定如何指导学生自学书本。只要在研究的基础上,我们所提供的学法才能让学生看得懂,才能是学生有可操作性。我在教学时,确定了学生的知识基础是已经学习了小数的意义和小数的读法、写法,也学习了小数的性质,对小数已经有了进一步的认识,能够利用小数的意义表达生活中小数的实际意义。因此提供了这样的学法指导:(1)让学生结合自学要求的问题,仔细看书P39例3,例4的内容(2)自学结束后,四人小组交流自己的发现。既给了学生看书的方法,同时又给了学生看书后的任务。这样就让学生的看书自学能够做到有的放矢。
四、把握动态生成,调整教学重点
如何了解学生的自学情况是调整教学重点的基础。这个环节是我们实践中碰到的最大难题,处理不好,就不能确定教学过程中探究的重点。处理好了这个环节就等于掌握了学生的自学情况,也就能展开深入的探究活动。在实际的教学中,我们既可以借助投影仪进行反馈,也可以让不同层次的学生到黑板板书来反馈,出现的问题有学生自己评价指导,存在的疑问由学生自己提出,并通过合作探究来释疑,这就是自学为主课堂教学中的动态生成之一。教学中我让学生上黑板板演答案,并让学生来评价指导。强调书写格式,让学生再看书,看看书上例题是怎样书写的。然后提问:0.080=0.8可以吗?为什么?3=3000可以吗?为什么?你认为在化简小数,把整数和小数改写成指定位数小数的时候要注意什么问题?这样就为学生的探究活动提供了新的支点,进一步激发了学生的探究欲望和动脑意识。
五、整节课学生真正成为规律的探索者、发现者。小数基本性质的运用,我充分地让学生自己去探索、去发现。充分地相信学生、放手让学生去探索、去发现,每一次都是学生自己讨论,自己发现、自己总结、自己归纳,一层一层不断地深入,不断地完善,让学生自己自豪地说自己的发现、自豪地用自己的发现去解决问题,这些无疑都将对学生的终生有用。
因此,我们在设计问题的时候,没有拘泥步步为营,没有在学生容易出现“走岔路”的地方插好路标,而是给予学生更多地思考空间,允许学生犯错,在提问的时候,尽量做到有的放矢,挖掘学生的思维潜能。
四年级下册教案数学人教版16
教学目标:
1、让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
2、培养学生观察、比较、抽象和归纳概括的能力。
3、激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点:
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教学过程:
一、情境引入
1、复习旧知
出示超市商品的价格标签,让学生读出这些小数
师:“这两天我们学习了小数,小数在我们的生活中应用非常广泛。”
2、引入新课
说说这些小数的相同点(末尾都是0)
师:今天这节课我们就一起来研究末尾是0的小数。
二、探究新知
1、探究0.1米、0.10米、0.100米的大小
0.1米=米=()分米
0.10米=米=()厘米
0.100米=米=()毫米
⑴学生独立思考在作业纸上完成。
⑵汇报交流,师用课件演示。
师:“同学们观察这组小数有什么特点?我们再来举出一组小数看看是否有这样的特征。”
2、探究0.3与0.30的大小
⑴学生小组探究
⑵生汇报交流:
方法一:添上单位名称
方法二:用方格图进行比较
⑶从数位表上比较
相同点:3所在的数位相同,都在十分位上,都表示3个十分之一。
不同点:0.3表示3个十分之一,0.30表示30个百分之一,他们表示的意义不一样。
3、比较、归纳小数的性质
比较0.3 =0.30
0.1 =0.10 =0.100
从左往右看,小数末尾添上“0”,小数的大小不变;
从右往左看,小数末尾去掉“0”,小数的大小不变。
小结:小数的末尾添上“0”或去掉“0”,小数的大小不变。
4、揭示并板书课题:小数的性质
5、感受“末尾”的含义与重要性
练习:
想一想:他们三人的'身高一样吗?
⑴学生独立思考完成
⑵汇报交流:1.2与1.20比较
1.2与1.02比较(2个十分之一,2个百分之一)
⑶思考:1.2到1.20与1.2到1.02都在小数后面添上“0”了,小数的大小怎样改变了?(小数后面添上“0”,2的位置就发生了变化;而小数末尾添上“0”,小数大小不变)
三、巩固提升
1、化简下面各数,使小数大小不变:
50.50 200.04 3100 40.200 32.450
师:“化简小数的时候,千万不要改变小数的大小。”
师:咱们以后在运算中,遇到小数的结果末尾有0,我们可以将小数进行化简,这样体现数学的简洁性
2、将下列小数改写成三位小数,使小数大小不变
0.20 4.5 3.76 7.5000 3.01 8
师:“其实在生活中,我们不仅不要对小数进行化简,有时还需要对小数进行改写。”
3、游戏:你能说一个与3.50大小相等的数吗?
4、下面哪些数的末尾添“0”,数的大小不变?
6.3 4 5.00 100
⑴让生说说哪些数的末尾添“0”会改变大小,哪些不会改变大小?
师:“小数的末尾添上”0“后,小数的大小没改变。为什么在整数的末尾添上”0“后,数的大小改变了?”
⑵师用课件进行演示,让学生感受到在整数末尾添上“0”后,数的位置改变了,而在小数末尾不管添上几个0,小数的大小都不会改变。
5、提升题:你认为它们的大小相等吗?
让学生说说它们是否相等并说说为什么。
四、全课总结
师:“今天的学习你有什么收获?”
师:“其实小数的知识学问大着呢!现在我们只是刚刚学习小数的开始,同学们会在以后的学习中慢慢感受到。”
四年级下册教案数学人教版17
教学目标:
1、让学生通过计算、观察、交流、归纳等数学活动,发现并理解乘法分配律。
2、在探索规律的过程中,发现学生比较、分析、抽象和概括能力,增强用符号表达数学规律的意识。
3、能运用乘法分配律进行简便计算。
教学重点:
在解决实际问题的过程中发现并理解乘法分配律。
教学难点:
自主发现规律,抽象归纳,并能用符号语言或其他方式与同伴交流规律。
教师准备:
ppt课件
学生准备:
学习单
教学过程:
一、创设情境,导入新课
保护环境,植树造林是一项有意义的活动,让我们一起和光明小学的小朋友们去植树吧!
二、探究新知
1、探究乘法运算定律(课件出示例题)
光明小学在植树节组织植树活动,已知四年级一班有男生22人,女生18人,如果平均每人种3棵树。他们班一共可以种多少棵树?
(1)学生独立列式计算。
(2)交流解决问题的方法。
(分小组讨论,用多种方法去解,比一比,谁算得快?每位同学把自己的想法、做法说给你的同桌听,教师巡视,参与小组讨论)
(3)学生汇报。
预设生1:我先算出一班一共有多少人,再乘3就是一共植树的人数。
(22+18)×3
=40×3
=120(棵)
预设生2:先算出男生种的棵树,女生种的.棵树,最后加在一起就是一共植树的棵树。
22×3+18×3
=66+54
=120(棵)
让生1,生2的两种做法板书在黑板上,并讲出自己的想法。
2、小组讨论,探究规律
(22+18)×3 22×3+18×3
两个算式的结果相同,中间可以用什么符号?预设:=号
为什么他们的得数相同?预设:因为22个3加18个3,一共是40个3,所以相等。
3、你能不能写出两个这样的等式?生自主来写,个别学生板演。
4、这两组算式都相等吗?你是怎么知道的?
预设:生利用乘法的意义来理解。
5、这样的算式,你能写完吗?你能用符号或字母写出这个规律吗?
(个别学生到黑板上做,其他同学在学案纸上做。)
6、我发现:两个数的和与一个数相乘,可以先把它们____________________________,再____________。这叫做乘法分配律。
三、展示引导学习
1。 下列算式,正确的画“√”,错误的画“×”。
32×48+32×52=32×(48+52) ( )
(5 +24)×8=5×24+8×24 ( )
(10×125)×8=10×8+125×8 ( )
4×(30+25)=4×30+25 ( )
2。 在□里填上适当的数。
(45+55)×28=45×□ +55×□
4×□ + □ × □=4×(75+125)
27×12+73×12=(□ +□)×□
25×(4+8)= □ × □ + □ ×□
3、怎样简便怎样计算。
25 ×(4+8) 27×12+ 73×12
4、下面各题可以用乘法分配律计算吗?为什么?把能用的写出来,并计算。
(1)17×17+15×16 (2)(12+31)+82 (3)(11×25)×4
(4)23×12+23×88 (5)(35+45)×12
5、拓展延伸。
(1)光明小学在3月12日植树节组织植树活动,已知四年级一班有男生22人,女生18人,如果平均每人种3棵树。男生比女生多种多少棵树?
(2)运用乘法分配律进行计算:
102×45 15×99+1 5 9×123-9×23
板书设计:
四年级下册教案数学人教版18
【教材分析】
《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。
【设计理念】
《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。
【教学内容】
教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。
【教学目标】
1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。
2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。
3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。
【教学重难点】
1、重点:理解小数的意义。
2、难点:探索分数与小数的关系,深刻理解小数的意义。
【教学具准备】
PPT课件、米尺、彩带两条(2米和0。9米)
【教学过程设计】
一、情景导入
1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”
2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。
提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)
二、教学小数的产生
1、课件出示老师收集的一些图片。
看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)
2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)
师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。
【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。
二、教学一位小数意义
1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?
板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?
(1)那如果3份、7份呢?分别用分数、小数表示是多少?
(2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)
2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)
(学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。
3、教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。
猜想一下两位小数与什么样的分数有关?
三、教学两位小数意义。
1、学习两位小数。
(1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?
(2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示)
(通过学习迁移,引导学生自主学习二位小数。)
教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。
猜一猜:下面老师要将1米平均分成多少份?
(3)、教学三位小数意义。
1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?
1毫米、 1/1000米、0.001米
6毫米、 1/1000米、0.006米
13毫米、 13/1000米、0.013米
2、小结:分母是1000的分数可以用三位小数表示。
是不是只有这三种小数呢?
四、总结小数的意义
1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)
【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。
2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?
3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)
4、反馈:教材第51页做一做。
让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。
【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。
五、认识小数的计数单位和进率。
(1)课件出示智慧闯关第一关
0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100
师:学生讨论完成,并说一说为什么这样想?
师指名回答后小结:像0.3、0.5这样的一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的`计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。
师:同学们猜一猜三位小数的计数单位是什么?写作?
(2)课件出示智慧关第三关
0.1米里面有()个0.01米
0.01米里面有()个0.001米
教师小结:每相邻两个计数单位之间的进率是10。
(3)课件出示智慧关第三关
0.8的计数单位是( ),里面有( )个()。
0.06的计数单位是( ),有6个()。
0.032的计数单位是( ),有()个( )。
【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。
三、课堂巩固
1、练习九第2、5题
2、判断(课件出示)
【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。
四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?
把你的收获告诉同学们。
五、课堂延伸:课件《小数点的历史》
【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。
【板书设计】
小数的产生和意义
米1分米1厘米1毫米
9/10米1/10米1/100米1/1000米
0.9米0.1米0.01米0.001米
四年级下册教案数学人教版19
一、【教学内容】
观察物体(2)
二、【教材分析】
本单元内容包括由低到高观察同一物体和由远到近观察同一物体,它是在学生学习了从三个方向观察立体图形和在实际生活中有从不同方向观察同一物体经历的基础上进行教学的。通过这部分内容的学习,旨在让学生在观察、想象、分析和推理等观察物体的具体活动中,判断观察对象画面所发生的相应变化,发展学生的空间观念。
三、【教学目标】
1、知识目标:通过观察、比较,体验到从不同位置和角度观察物体所看到的形状是不一样的。
2、能力目标:积累数学活动经验,养成数学思考的习惯,发展空间观念。
3、情感目标:在活动中培养学生学习数学的热情,养成良好的合作、交流的习惯。
四、【教学重、难点】
重点:从不同位置观察同一物体的不同视图,发展学生的空间观念。
难点:培养学生观察能力与解决问题的能力。
教学课题观察物体
教学课时1主备教师
教学目标知识与技能:通过辨认从前面、右面、上面观察到的简单物体的形状和相对位置,进一步深化对实物和视图关系的认识。
过程与方法:在观察、操作、思考的过程中,增强对“空间与图形”的兴趣,逐步形成积极的数学学习情感。
情感态度与价值观:培养初步的空间想象和推理能力。
教学重点与难点1.重点:认识“从不同位置观察不同形状的物体,得到的视图形状可能是相同的,也可能是不同的。
2.难点:认识“从不同位置观察不同形状的物体,得到的视图形状可能是相同的,也可能是不同的.。
教学准备及手段多媒体课型新授课
教学流程初备修改部分
一、导入新授课
二、自主学习 质疑释疑
三、合作探究 突出重点
四、课堂达标 基础过关
五、课堂总结同学们观察过物体吗?一般我们是怎样观察物体的?可以从哪些角度观察物体呢?(观察物体要从不同的角度去观察,会得到不同的观察结果;观察的角度可以是前面、上面、右面) 这节课我们学习“观察物体”。板书:观察物体
1.观察投票箱。
(1)同学们知道这是什么?我们一起来观察,你能指出这个投票箱的前面、右面和上面吗?(学生指一指)
(2)从前面、右面和上面观察这个投票箱,你看到的形状是什么样子的?(先让学生想一想是什么形状,再让学生观察。)
(3)汇报交流。教师展示从不同角度看到的形状
学习例1。
1.出示视图1:这张图是由几个小正方体摆成的?看了这张图,你能把它摆出来吗?(学生分组操作) 分别从它的前面、侧面、上面观察,你分别看到的是怎样的形状?分别把它们画在方格纸上。相同吗?
交流:你发现了什么?(同样的物体从不同角度观察得到不同的形状)
(1)拿出你的文具盒,分别从前面、右面和上面看一看,和你的同桌说一说看到的形状分别是什么样的?(指名1-2名同学说一说)
(2)P13做一做。
四年级下册教案数学人教版20
教学内容
人教版四年级下册教材第32、33页的例1及“做一做”。
内容简析
教材选择学生熟悉的教室情境简要地呈现了“小数产生”的过程,通过实际的测量活动,体会小数产生的必要性。考虑到学生对长度单位比较熟悉,教材选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过将分米、厘米、毫米改写成米,说明把低级单位的数改写成高级单位的数可以用分母是10、100、1000……的分数表示,再进一步用小数表示。
教学目标
1.使学生了解小数的产生。
2.让学生在初步认识分数和小数的基础上,弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系,进一步理解小数的意义。
3.使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
4.培养学生的观察、分析、推理能力。
教学重难点
弄清十分之几、百分之几、千分之几……与一位小数、两位小数、三位小数……的关系。
教法与学法
1.主要采用自主探究、讨论、发现的教学方法,先引导学生回忆毫米、厘米、分米与米的关系,并用分数表示,再把分数化成小数,从而了解小数的意义。
2.通过观察、分析、讨论、类推、迁移等学习方式,培养学生的自主学习意识和创新意识,学会探究问题的方法。
教学过程
一、情景创设,导入课题
经典文学引入:你们熟悉《三字经》吗?我们来一起背几句好吗?《三字经》中有这样一句话“一而十,十而百,百而千,千而万”你知道是什么意思吗?(意思是十个一是十,十个十是一百,十个一百是一千,十个一千是一万。)
(教师从右往左板书:10000 1000 100 10 1)
谈话:看来《三字经》中也藏着有趣的数学问题,观察刚才的一组数,从左往右看,从1开始,10个1是10,10个10是(100),10个100是(1000),10个(1000)是(10000),按这样的规律,接下去应该是哪些数呢?
提问:从右往左看,10000、1000、100、10、1,接下去又是哪些数呢?它们之间的进率又是多少呢?就是今天我们要学习的“小数的意义”。
【品析:从《三字经》中的数学问题入手,吸引儿童的眼球。在学生还没有接触“扩大到、缩小到”这些数学术语之前,教师通过让学生观察10000、1000、100、10、1这一数组,引导学生根据一组数的规律进行推理,自然地引出了课题。更妙的是,从“大数”中去看小数,建立了整数和小数间的联系,并在无形中渗透了进率关系,为学生进一步学习小数的意义埋下伏笔。】 游戏引入:同学们喜欢玩游戏吗?今天老师和你们一起玩个游戏,名字叫“估一估、测一测”。先请同学们估一估老师和你伙伴的身高?再测量他们的实际数据。
揭示小数的产生。
谈话:刚才在测量身高的时候,得到的结果是1米多,如果用“米”作单位,就得不到整数的结果。像这样在实际测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。由于日常生活和生产的需要,从而产生了小数。
【品析:由日常生活中熟悉的测量情景入手,引起学生的学习兴趣,也使学生认识到数学与生活的紧密联系,数学学习显得更有意义。】
二、师生合作,探究新知
1.小数的产生。
引导学生观察教材第32页例1,在进行测量和计算时,往往不能正好得到整数的结果,这时也常用小数来表示。
提问:我们知道1米=10分米=100厘米=1000毫米,那么以分米、厘米、毫米为单位的整数怎么用以米单位的小数表示呢?
2.认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
提问:①用米作单位,1分米怎样用分数来表示? 为什么?(结合分数的意义说明)
②用小数表示是:0.1米。说说0.1米表示什么?
把1米平均分成10份,每份是1分米,是1/10米,也可以写成0.1米。
板书:1分米=1/10米=0.1米。
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、0.7米表示什么意思。
3.认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,1厘米怎样用分数来表示? 为什么?
②用小数表示是:0.01米。说说0.01米表示什么。
把1米平均分成100份,每份是1厘米,是1/100米,也可以写成0.01米。
板书:1厘米=1/100米=0.01米。
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米表示什么意思。
4.认识三位小数。(出示米尺)
(1)在米尺上找出1毫米的地方。
①用米作单位,1毫米怎样用分数来表示? 为什么?
②用小数表示是:0.001米。说说0.001米表示什么。
把1米平均分成1000份,每份是1毫米,也是1/1000米,用小数表示是0.001米。
板书:1毫米=1/1000米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思。
明确:照这样分下去,还可以得到万分之一米……也可以写成0.0001米……
像刚才小数点后面有一位的小数叫一位小数,有两位的小数叫两位小数……
在教学1分米=1/10米=0.1米时,先让学生初步感悟十进分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识两位小数、三位小数,从而归纳出小数的意义。
【品析:此环节合理安排引导和放手的时机,给学生自主探索的空间,加深学生对小数的认识和理解。】
三、反馈质疑,学有所得
质疑1:什么样的分数可以用一位、两位、三位……小数来表示?
分母是10、100、1000……的分数分别可以用一位、两位、三位小数表示。
质疑2:小数的计数单位是什么?(展开讨论)
十分之一、百分之一、千分之一……,分别写作0.1、0.01、0.001……
【品析:引导学生进行观察,使学生始终参与到概念的探究过程中,通过比较、归纳、分析和综合理解小数、分数之间的关系,最后抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。】
四、课末小结,融会贯通
1.这节课我们学习了什么?你知道了什么?你还有什么问题?
帮助学生梳理本节课知识:
(1)小数的意义:把单位“1”平均分成10份、100份、1000份……这样的一份或几份可以用分母是10、100、1000……的分数表示,也可以用小数表示。
(2)小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
2.认识了新的朋友“小数”,那么它该怎样读呢?听到小数又该怎样写呢?在下节课的研究中你就会明白了。
【品析:对知识点进行梳理,培养学生的`概括能力和语言表达能力。】五、教海拾遗,反思提升
示例:
1.有关小数,三年级时学生已有了初步认识,在生活中也有所接触,如购物中的数学问题等。本节课,我通过让学生量一量来引入本课所学知识,从现实情景中感受小数的产生,促进学生进一步学习的欲望,激发学生学习的积极性。
2.重视学生的自主探究。在引入小数意义的教学时,学生在教师的指导下更多地是通过自主探究、深入感悟开展学习活动的。教师给学生提供了很大的学习空间。本节课学习的基础是分数的初步认识,教师利用米尺,将分母是10的分数与一位小数相联系,通过学生的观察、体验,感悟新知识,掌握新知识,并以此为基础,进一步探究两位小数、三位小数的意义。课堂教学中始终应该关注学生的有效学习,发挥学生的主体作用。
3.课堂结构体现层次性。课堂教学安排要努力体现学生的认知规律,先易后难,先扶后放。在本节课的教学中所采用的“一引、二放、三收获”正好体现了我的设计思想。在小数意义和小数计数单位教学中,首先通过教师的引导,让学生建立正确的概念,如借助直观工具建立一位小数的意义。我认为,在学生头脑中形成正确表象非常重要。在小数计数单位的教学中,我也同样如此安排。
我的反思:
板书设计
小数的产生和意义
小数的产生:在进行计算和测量时,往往不能正好得到整数的结果,这时常用小数来表示。
整数 分数 小数
一位小数:1分米=1/10米=0.1米
两位小数:1厘米=1/100米=0.01米
三位小数:1毫米=1/1000米= 0.001米
小数的计数单位是:十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位之间的进率是10。
四年级下册教案数学人教版21
教学目标:
1.通过学习,使学生理解和掌握乘法分配律。
2.学会运用乘法分配律进行简便运算。
3.学会用字母表示乘法分配律。
教学重点:
理解和掌握乘法分配律
教学难点:
运用乘法分配律进行简便运算。
教学过程:
一、复习引入
1.说一说什么是乘法交换律?什么是乘法结合律?边说边用字母写出来。
2.全班交流。
3.今天我们来学习乘法的又一个运算定律。板书课题:乘法分配律
二、在情境中初步感知乘法分配律
1.课件出示例7
收集信息,明确条件问题
问题:
(1). 从图中你都知道了哪些信息?
(2). 要想解决问题,需要用到哪些
条件?
(3).读相关条件和问题
独立解决,思考不同方法
(1). 根据题意,你能列式解答吗?
有没有不同的方法?
(4+2)×25 4×25+2×25
=6×25 =100+50
=150 =150
(2). 谁能说一说这样做的道理?
(先算出每一组植树的有6人,再乘25个组,就是一共植树的人数。)
(3). 有没有不同的做法?
(分别算出25个小组挖坑、种树的'人数和25个小组抬水、浇树
的人数,把这两部分加在一起,就是一共植树的人数。)
枚举验证,比较概括规律
问题:(1). 这两种做法有什么相同点和不同点?
(相同点:结果相等,(4+2)×25=4×25+2×25。)
(2). 你还能举出像这样的等式吗?(展示学生的举例,4~5组。)
(3). 观察这些算式,有什么特点?
(两个数的和与一个数相乘,可以先把它们
与这个数分别相乘,再相加。)这叫做乘法分配律。
(4). 你能用自己喜欢的方式表示乘法分配律吗?
三、巩固练习,提升认识
1. 下面哪些算式是正确的?正确的画“√”,错误的
画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2. 下面哪些算式运用了乘法分配律?
117×3+117×7=117×(3+7) 24×(5+12)=24×17
4×a+a×5=(4+5)×a 36×(4×6)=36×6×4
四、课堂小结
今天我们学习了什么?你有什么收获?
五、布置作业
第28页练习七,第7题。
四年级下册教案数学人教版22
教学内容:
课本19页例2及练习三3、4题。
教学目标:
1、能绘制简单的平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
重点难点:
能根据方向和距离准确标出物体的位置。
教学方法:
教法:创设情境,演示讲解;
学法:观察思考,操作交流。
教学过程:
一、创设情境 生成问题
1、上节课给出地图,同学们能说出位置, 这节课我们继续探讨给出了方向和距离,我们如何画出这个物体所在的位置。
板书课题:绘出物体位置
2、说一说:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?
出示数据
(1)教学楼在校门的正北方向 150米处。
(2)图书馆在校门的北偏东35度方向 150米处。
(3)体育馆在校门的西偏北40度方向 200米处
(设计意图:开门见山,引入课题。一上课就使孩子明确本课的学习内容,使孩子迅速调动认知体系中与本节课有关认知,为学习新课做准备。 )
二、探索交流 解决问题
1、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
2、小组汇报完成平面图绘制的.计划,教师进行梳理
(1)绘制平面图的方法
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说出,老师可以进行引导:你们打算怎样在图上表示出 150米, 200米?从而帮助学生确定比例尺和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
3、小组活动,绘制平面图。
4、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
四年级下册教案数学人教版23
课题:小数点位置移动引起小数大小的变化
教学内容:教科书43页例1.
教学目标:
1. 理解和掌握小数点位置移动引起小数大小的变化规律
2. 通过总结规律的过程,培养学生观察比较,概括的能力。
教学重点、难点 :
小数点位置移动引起小数大小的变化规律,归纳“规律”的过程,既是教学的重点,又是学生学习的难点。
教学设计
一、复习导入:
板书:35.67 3.567 356.7 3567比较大小。
问:这四个数有什么相同特点?(数字及排列顺序一样。)有什么不同?(小数点位置不同,大小不同。)
二、新知探究
从上题可见小数点的位置直接影响到小数的大小。那么,小数点的位置移动会引起小数大小怎样的变化呢?今天我们一起研究。
板书课题:小数点位置移动的规律。
1、例1 把0.009米的小数点向右移动一位、两位、三位......小数的大小有什么变化?
(1)0.009米等于多少毫米?(板书:0.009米=9毫米)
(2)师移动0.009米的小数点。 向右移动一位,变为多少毫米?大小发生了什么变化?(板书:0.09米=90毫米,原数扩大10倍)
向右移动两位,原数变为多少?是多少毫米?大小有什么变化?(板书:0.9米=900毫米,原数扩大l00倍)
向右移动三位,原数又变成多少?是多少毫米?大小又发生了什么变化?(板书:9米=9000毫米,原数扩大1000倍)
小数点可不可以向右移动四位、五位甚至更多位? 师:所以我们要在移动位数和扩大倍数的后边点上省略号。
(3)从这一例子看,小数点向右移动会引起原数怎样的变化?你能总结出规律来吗?
引导学生总结出: 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大loo倍;小数点向右移动三位,原来的数就扩大1000倍......
2.刚才是由上往下观察(画↓),如果我们由下往上观察(板书↑),小数点相当于往哪边移动?(向左移动),小数点向左移动了几位?原来的数会有怎样的变化? (小组讨论)
全班交流讨论结果,引导学生得出:
小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小l000倍......(板书)
3.引导学生完整地概括小数点移动位置引起小数大小的变化规律。 (在书上补充完整)
4.强调:掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的`关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000倍......
三、巩固练习:P45做一做
四、小结:
掌握小数点移位的规律,一要注意移动方向与变化的关系,就是左移就缩小,右移就扩大;二是要注意移动位数与变化的倍数的关系,移动一位,变化的倍数是10倍,移动两位,变化倍数是100倍,移动三位,变化倍数是l000。
五、布置作业
练习十一1-3题。
板书设计
小数点位置移动引起小数大小的变化
小数点向右移动一位,相当于把原数乘10,小数就扩大到原数的10倍;
小数点向右移动两位,相当于把原数乘100,小数就扩大到原数的100倍;
小数点向右移动三位,相当于把原数乘1000,小数就扩大到原数的1000倍;
小数点向右移动四位,相当于把原数乘10000,小数就扩大到原数的10000倍;
小数点向左移动一位,相当于把原数除以10,小数就缩小到原数的1/10;
小数点向左移动两位,相当于把原数除以100,小数就缩小到原数的1/100;
小数点向左移动三位,相当于把原数除以1000,小数就缩小到原数的1/1000;
小数点向左移动四位,相当于把原数除以10000,小数就缩小到原数的1/10000;
四年级下册教案数学人教版24
教学目标:
1、能用语言描述简单的路线图。
2、在合作交流中能绘制简单的路线图。
3、体会路线图在实际生活中的广泛应用。
教学重点:体会定向运动行走过程中的观测点在不断变化。
教学难点:根据观测点的变化来重新确定方向标观察物体的位置。
教学准备:每个(小组)学生一个越野路线图,每人一张白纸(绘图用)教学过程:
一、山地越野:描述行走路线
小组讨论:
1、作为越野队员我们将怎样确定越野路线?
2、我们是怎样确定方向和路程的?
描述行走路线为什么要到达一个目标就重新画出方向标?
描述行走路线一个越野车队,四个赛段的时间分别是15分钟、5分钟、35分钟、5分钟,他们走完全程的平均速度是多少?10千米 描述行走路线讨论:
为什么第一赛段的路程与第三赛段路程长短差不多,时间却相差一倍多?车坏了、路是上坡、路上障碍物多、路上休息了一些时间……
【设计意图】由于学生在观察主题图时,已经对“公园定向越野赛”这个情境比较熟悉,能够理解为什么到达每一处后要确定要到的下一个位置的方向和距离,而且在三年级时已经掌握了利用方位名词描述简单的路线图,因此,教学时可以让学生在小组内合作完成,再在全班汇报。另外还需要注意的是,在学生确定每一赛段的路程时,只要学生能用自己的方法解决问题就可以了,不必要求学生用解比例的方法。教师还可以引导学生思考“起点与1号检查点间的距离”“1号与2号检查点间的距离”大约都是1千米,为什么第一小组走完第二赛段所用的时间是第一赛段的2倍。
二、沙漠驱车越野:绘制简单路线图 根据所给信息画出越野路线
1、在起点的东偏北40°方向距离350千米的.地方是点1
2、在点1的西偏北25°方向距离200千米的地方是点2
3、终点在点2的西偏南20 °方向距离它300千米的地方
(1)点1的西北方是,终点在起点的 方向,点2在起点的 方向。
(2)说出具体路线:
从起点出发,先向 偏 度方向走 km到点1,再向 偏 度方向走 km到点2,最后向 偏度方向走 km到终点。
【设计意图】教学时,可以采用小组活动的方式进行。由小组内的一名学生描述自己确定的那条线路,其他学生按这名学生的描述绘制线路图,然后在组内讨论每一个人绘制的路线图是否清楚、准确,并加以修改和完善。通过这样的过程,学生不仅能够借助不同的参照物确定物体的位置,并画出线路图,而且能够感受到合作的意义和交流的重要性。
三、方法应用
【设计意图】让孩子们根据前面所学的知识进行应用,从而解决实际问题。
四、梳理知识,总结升华
谈话:这节课你有什么收获呢?
[设计意图]对本节课的学习做一个简单的回顾整理,形成基本的知识网络,整理学习思路,为后面的学习打好基础。
五、课堂检测
课堂检测A
(1)说一说小伟上学可以怎么走,说出每一段的方向。(2)小伟走哪条路最近?
(3)你还能提出哪些数学问题? 课堂检测B 1、2、
四年级下册教案数学人教版25
教学内容
小数的意义
教学目标
1.知识与技能:结合具体的生活情景,使学生体会到生活中存在着大量的小数。
2.过程与方法:通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.情感态度与价值观:通过练习,使学生进一步体会数学与生活的密切联系,提高学数学的兴趣。
重点难点
重点:体会十进制分数与小数的关系,初步理解小数的意义。
难点:能够正确进行十进制分数与小数的互化。
教具准备
课件、正方形纸2张。
教学过程
一、情境导入。
1.师:老师昨天去逛了下超市,买了些东西,但是在付款的时候遇到了问题,我今天把遇到的问题带来了,希望你们能够帮我解决,好吗?
生:好。
2.我们先来看看老师都买了什么?(课件播放常见物品的价格。)
铅笔:0.1元一支圆珠笔:1.11元一支
猪肉:9.5元一斤黄瓜:5.96元一千克
教师:上面这些物品的价格有什么特点?
学生:都不是整元数。(都是小数。)
教师:还记得小数的读法吗?谁能读出上面的小数?读小数时需要注意什么?
学生依次读出:零点一、一点一一、九点五、五点九六。
师:大家知道这些小数是几位小数吗?
生:......
2.一些商品的标价用元做单位时可以用小数表示,那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
生:身高体重跳高跳远
小数在我们的生活中应用非常广泛,三年级我们已经学过小数的认识,那么这节课我们一起探究小数的意义。
板书:小数的意义
二、自主探究。
1.一位小数的意义
a.那么多的小数,我们今天就从0.1开始入手研究。
b.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.1表示什么意思?
学习单元角米分米网格图
c.生反馈0.1表示什么意思。
d.思考:我们选用的图都不一样,为什么都可以表示0.1?
你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10角,0.1元就是把1元平均分成10份,它表示其中的一份,所以1元的也可以写成0.1元。
生2:1米=10分米,0.1米就是把1元平均分成10份,它表示其中的一份,所以1米的也可以写成0.1米。
生:......
2.两位小数的意义
师:同学们真了不起,都善于思考问题,勇于探究,你们0.01又是什么意思呢?
a.拿出学习单,在学习单中人选一幅图独立研究,在小组里说一说0.01表示什么意思?
学习单元分米厘米网格图
b.生反馈0.01表示什么意思。
c.思考:你还能在图中找到其他小数吗?他们表示什么意思?
学生交流反馈。
学生:1元=10分,0.01元就是把1元平均分成100份,它表示其中的一份,所以1元的也可以写成0.01元。
生2:1米=100米,0.01米就是把1米平均分成100份,它表示其中的一份,所以1米的也可以写成0.01元。
生:......
3.三位小数的意义
我们还可以把“1”平均分成1000份,其中的一份是(),也可以表示为();其中的'59份是();也可以表示为()
小数我们写的完吗?其实呀,小数的位数越多就分的越细。
大家刚刚还记得老师去超市买了什么吗?你能说说他们表示什么意思吗?
三、巩固练习
教师:0.8可以表示成分数吗?可以表示成小数吗?
学生:分别是和0.7。
教师:下面我们以小组为单位,来进行分数小数互化游戏。(出示课件)
同学们在小组内进行游戏交流,教师巡视指导。
四、探究结果报告。
教师:通过刚才游戏,你们发现了什么?(出示课件)
师生共同归纳:分母是10、100、1000……的分数都可以用小数表示,小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
1.像0.1、9.5这些小数叫一位小数。(分母是10的分数,可以写成一位小数,表示十分之几。)
2.像1.11、5.96这些小数叫两位小数。(分母是100的分数,可以写成两位小数,表示百分之几。)
3.像0.001、0.125这些小数叫三位小数。(分母是1000的分数,可以写成三位小数,表示千分之几。)
四、教师小结。
小数中,每相邻两个计数单位间的进率都是10。
五、课外拓展。
分享最美数字0.618
四年级下册教案数学人教版26
教学目标:
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点:
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教学过程:
一、 创设情境,引入新课
师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?
生:扩大了10倍。
师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?
生:末尾添了2个“0”,扩大了100倍。
师:那我们能让它变小么?
生:把末尾的“0”去掉。
师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?
生:略。
师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的末尾添上“0”这个数会变么?
生:不会变。
师:那我再添上一个“0”呢?
生:还是不变。
师:你是怎么知道的?
生:略。
师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?
生:验证。
二、讲授新课
师:在这老师给你们几点建议。先写出一个小数,在它的末尾添上“0”或者去掉“0”。利用手中的学习材料研究,或者借助已有的知识进行说明,小组合作,证明猜想,并记录在乐学单上。可以证明一组或者几组。小组内交流研究方法后,全班汇报。这些清楚了么?现在我给大家一点时间,开始。
(生动手操作)
师:好了,同学们。我发现大家的智慧真了不起,在短短的时间内研究的都很不错。那我们接下来开始汇报,在汇报前老师还有一个要求,一个组在汇报的时候,其他小组认真倾听,听完之后看看你们组研究的方法与他们一不一样,再做补充,在汇报的时候要说明两件事,你们是怎么验证的?你么验证的结果是什么?哪个小组先来汇报?
(生汇报)
师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。
生:略。
师:有没有哪个小组是借用皮尺来验证的,谁来说一说?
(生汇报)
师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。
师:有哪个小组是借用数位顺序表来验证的么?
(生汇报)
师:还有哪个小组也来说说你们组研究的结果。
师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……
生:略。
师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?
生:略。
师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?
师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。
师:刚才我们举了那么多例子,都是在末尾添0的`,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。
生:略。
师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?
生:略。
师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。
三、巩固练习
师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?
生:略。
师:1.05中的0可以去掉么?
生:不能,因为0不在末尾。
师:那你们认为在小数性质这句话中,哪个词是最重要的?
生:末尾。
师:接下来,我们来看这题,你们知道什么是化简么?
生:略。
师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?
生:略。
师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。
生:略。
师:今天我们学习了小数的性质,大家知道了什么?
生:略
师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。
师:好的同学们,今天这节课上到这,下课。
四年级下册教案数学人教版27
【教学内容】
人教版义务教育课程标准实验教科书四年级第八册《三角形的分类》
【教学目标】
知识目标:通过观察、操作,比较、发现三角形角与边的特征,学 会按一定标准给三角形分类,理解并掌握各种三角形的特征.
能力目标:经历动手操作、分析思考的过程。培养学生的观察能力操作能力和形象灵活的思维能力。
情感目标:激发学生的主动参与意识,自我探索意识和创新精神。
【教学重、难点】
重点:感受分类思想,学会从不同角度给三角形分类。
难点:区别掌握各种三角形的特征。
【教学方法】
1、阅读数学书83、84页;
2、动手操作量一量、分一分;
3、小组内说一说,议一议。
【教学准备】
教具:课件,各种不同的`三角形纸片
学具:7个不同的三角形纸片、量角器、直尺、表格纸
【教学过程】
创设情境、导入新课
1、师:同学们,你们喜欢玩拼图游戏吗?
2、师:谁能说说这些三角形都有什么共同特点?这些三角形形状相同吗?如果让你把这些三角形分类的话,你会从哪些方面进行分类?
优秀教案 欢迎下载
3、板题:三角形的分类
4、自学课本,完成导学案中“自主学习”部分。
5、学生汇报,自评导学案。
二、互动合作、展示交流
(一)、探究按角的大小进行分类
1、师:我们先来研究按角来分,可以把这些三角形分为哪几类?请同桌合作完成表一。
2、学生汇报探究成果。
3、练习:猜一猜,我最棒!
4、师:如果把三角形看作是一个大家庭的话,按角来分那么可以分为哪几个小家庭呢?
(二)、探究按边的长短进行分类
1、师:如果我们把这些三角形按边的长短来分,又可以把这些三角形分为哪几类?请同桌合作完成表二。
2、学生汇报探究成果。
3、探讨等腰三角形与等边三角形的关系?
4、认识等腰三角形各部分名称。并列举生活中的这两种特殊的三角形? 三、巩固练习,拓展延伸
完成导学案中“达标测评”部分,小组评导学案。 四、课堂总结、布置作业
1、师总结:同学们,通过这节课的学习,你有什么收获吗? 2、作业:完成导学案中“快乐运用”部分。 【板书设计】 三角形的分类
按角来分 按边来分
四年级下册教案数学人教版28
教学目标:
1、在学生初步认识分数和小数的基础上,进一步理解小数的意义。
2、使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
3、培养学生的观察、分析、推理能力。
教学重难点:理解小数的意义;知道小数的计数单位及单位间的进率
教具准备:多媒体课件、学生每小组一把米尺
教学过程:
一、创设情景、生成问题
师:课桌每天都在为我们服务,但同学们有没有认真的观察过它,你知道课桌的长是多少吗?谁来估一下。谁还愿意估一估课桌的宽是多少?(学生猜测)
师:同学们的猜测对不对?下面我们就来验证一下。小组合作,在长和宽中选择你们喜欢的一项测量,看哪个小组动作又快又准。 (小组合作测量桌子的长、宽)
汇报:课桌长是1米5厘米、宽是40厘米。
师:40厘米用米作单位怎么表示?
(学生汇报老师板书)
师:我们测量了桌子的长和宽,在用米作单位时得不到整数的结果。其实生活中还有很多地方在进行测量和计算时,往往得不到整数的结果,为了适应生活和生产的需要,于是便产生了小数。这节课我们就一起来研究小数的产生和意义。板书课题。
(设计意图:学生对于分数和小数有初步的认识,在这个基础上让学生测量课桌的宽,在用米表示时得不到整数的结果可用小数来表示,感受小数产生的必要性。)
二、探索交流、解决问题
师:刚才我们在表示桌子的宽是多少时,有的同学用分数表示,有的用小数表示,看来小数和分数之间一定有联系,究竟有什么联系呢,下面我们就一起来探索他们的秘密。我们要使用的工具就是直尺。请同学们看屏幕。
1、认识一位小数
①把1米平均分成10份,每份长多少?用分数怎样表示? 小数呢?
师:那这样的3份,写成分数、小数是多少?7份呢?
师:视情况评价,请同学们告诉我十分之一与0.1,十分之三与0.3,十分之七与0.7有什么关系
师问像0.1、0.3 、 0.7这样的小数的小数点右边有几位小数? 学生回答
再认真观察,这些分数有什么共同特点? 可同桌之间讨论
所以你认为什么样的分数可以写成一位小数?小组讨论
师小结:分母是10的分数,可以写成一位小数。即一位小数表示十分之几(板书)学生体会一下得到结论的过程,举例。
2.认识两位小数
还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学习.看哪一组能在较短的时间内完成学习任务.
课件出示
1)、把1米平均分成100份,每份长是多少?
2)、1厘米是几分之几米?用小数表示是多少米?
3)、3厘米、6厘米、10厘米分别是几分之几米?用小数表示是多少米?
班内交流并演示,并视情况评价。
小组再交流
1. 像0.01、0.03 、 0.06、0.10这样的小数的小数点右边有几位小数?
2. 这些分数有什么共同特点?
3. 什么样的分数可以写成两位小数?
生小组讨论并班内交流,师视情况评价
师小结:分母是100的分数,可以写成两位小数。即两位小数表示百分之几(板书)
生体会并举例
3.认识三位小数
我们已经知道了十分之几可以表示成一位小数,百分之几可以表示成两位小数那么请同学们猜一猜三位小数与什么样的分数有关呢?师适时表示鼓励如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?
生答师演示,视情况评价
共同总结:分母是1000的分数,可写成三位小数,即三位小数表示千分之几(板书)
4、我们还可以用上面的方法,把1米继续分下去,得到四位、五位…小数。那你们能告诉我四位小数表示什么吗?五位小数呢?
生答
是同学们都非常聪明请同学们根据黑板上的.内容回忆我们探讨的过程,和同伴们交流一下,你都发现了什么?
同桌交流,学生汇报,课件演示
5、对口令
同桌两人,一人说分母是10、100、1000的分数,另一人说出小数然后互调。
6、探究小数的计数单位。
大家知道分数中是,十分之几的计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一,每相邻的两个计数单位之间的进率是10,那么小数的计数单位呢?
生答
每相邻的两个计数单位之间的进率是多少呢?
三、巩固应用、内化提高
1、同学们表现非常棒,现在老师要考一考大家,有没有信心接受考验呀?
进入考一考环节
2、现在让我们走进生活,看看生活中的一些数量怎么用小数表示。
四、回顾整理、反思提升
1、出示爱迪生的格言天才= 1/100的灵感+ 99/100 的勤奋,你能用小数把等式中的分数表示出来吗?
2、这是大发明家爱迪生用加法描述的一句格言,你明白其中的道理吗?人必须勤奋才能有所成就,也希望同学们通过自己的勤奋努力成为对国家有用的人才!
小数的产生和意义
1分米 1厘米 1毫米
1/10米 1/100米 1/1000米
0.1米 0.01米 0.001米
一位小数 两位小数 三位小数
四年级下册教案数学人教版29
教学目标:
1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。
2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。
教学重点:
理解和掌握小数的意义。
教学难点:
理解小数的意义。
教学过程:
一、导入课题
三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。
二、小数的意义
板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。
像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?
板书一位小数两位小数三位小数
1、一位小数
这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。
出示学生作品:有错的,有对的。
到底哪位同学的意见是正确的呢?我们能用原来的知识来说明其中的道理吗?
学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。
大家的意见统一了,谁来说说0.1究竟表示什么?
小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。
板书:=0.1
那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5
同学们观察一下,刚才我们看到的这些小数都是...?一位小数
师:你能说一说一位小数表示的意思了吗?
小结:一位小数表示十分之几。
一份,也就是十分之一,叫做一位小数的计数单位,写作0.01
板书:计数单位:十分之一写作:0.1
0.2里面有几个0.1?0.3呢?0.5呢?
出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?
再添上1个0.1是多少?(10个0.1)
课件演示:10个0.1是1,1里面有10个0.1。
2、两位小数。
(1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?
课件展示:正方形用来表示1,0.01就表示百分之一。
涂色部分是0.01,空白部分呢?0.99表示什么?
0.99里面有几个0.01?
请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?
(2)学生自由活动,点名回答。
(3)两位小数有什么特点?
小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。
出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01
3、认识三位小数。
(1)根据一位小数和两位小数的特点,你能总结三位小数的.特点吗?
让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。
4、一位小数、两位小数、三位小数计数单位之间的关系可以用一幅图表示。
课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。
5、数轴上认识小数
出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?
(1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。
(2)、在数轴上找到3.14,3.141
三:知识眼延伸
3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。
课件:
1、介绍圆周率
2、介绍0.618
四:课堂总结:
如果这节课满分是1,你会为自己的表现打多少分呢?
四年级下册教案数学人教版30
单元内容:
本单元主要内容有:三角形的特性、三角形两边之和大于第三边、三角形的分类、三角形内角和是180°。
单元目标:
1、使学生认识三角形的特性,知道三角形任意两(绿色圃中小学教育网边之和大于第三边以及三角形的内角和是180°。
2、使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
3、联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
4、使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。
单元教学重点:
认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°,能够辨认和区别锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形。
单元教学难点:
通过拼摆、设计等活动,使学生感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
课题:三角形的特性
教学内容:教材59页例1、2。
教学目标
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
2、通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4、体验数学与生活的联系,培养学生学习数学的兴趣。
教学重点:掌握三角形的特性
教学难点:会画三角形指定底边上的高。
教学关键:要联系生活实际,让学生在充分感知的基础上抽象出三角形的图形,从而认识三角形的特性。
教学过程
一、创设情境,导入新课
1、出示图片,找出户图中的三角形。
2、生活中有哪些物体的形状或表面是三角形?
3、导入新课。
师:我们大家认识了三角形,三角形看起来简单,但在工农业生产和日常生活中有许多用处,看来生活中的三角形无处不在,三角形还有些什么奥秘呢?今天这节课我们就一起来研究这个问题。(板书:三角形的认识)
二、操作感知,理解概念
1、发现三角形的特征。
请你画出一个三角形。边画边想:三角形有几条边?几个角?几个顶点?展示学生画的三角形,组织交流:三角形有什么特点?让学生在自己画的三角形上尝试标出边、角、顶点。
反馈,教师根据学生的汇报板书,标出三角形各部分的名称。
2、概括三角形的定义。
引导:大家对三角形的特征达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?
学生的`回答可能有下面几种情况:
(1)有三条边的图形叫三角形或有三个角的图形叫三角形;
(2)有三条边、三个角的图形叫三角形;
(3)有三条边、三个角、三个顶点的图形叫三角形;
(4)由三条边组成的图形叫三角形;
(5)由三条线段围成的图形叫三角形。
阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?
组织学生在讨论中理解“三条线段”“围成”。
3、认识三角形的底和高。
指出:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
出示教材第61页上的三角形。提问:这是三角形的一组底和高吗?在这个三角形中,你还能画出其他的底和高吗?
4、为了表达方便,用字母A、B、C分别表示三角形的3个顶点,上面的三角形可以表示成三角形ABC。
5、例3:用3根小棒摆三角形,用4根小棒摆四边形,看看各能摆出几个?(小棒的长度都一样。)你发现了什么?
三、实验解疑,探索特性
1、提出问题。
出示教材第61页插图:图中哪儿有三角形?生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?
2、实验解疑。
下面,请大家都来做一个实验。
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
四、巩固运用,提高认识
P60做一做
五、总结评价,质疑问难
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
六、作业
完成练习十五1、2、3题。
四年级下册教案数学人教版31
教学目标
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。
3、使学生在教学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
学情分析
本节课的知识在以前的数学计算中有相应的认知基础,但并没有由感性认识上升到一定的理性认识。本节课充分让学生利用主题图情境,逐步生成后续的问题,通过解决问题,举出例子,总结归纳的方法,理解和掌握加法运算定律,并学会用字母来表示加法运算定律。知识由感性上升到理性,遵循了学生的认知规律。原来学生只知道可以这样做,现在又知道了它们的依据,这种“再认识”加深了新知识的巩固和记忆。
教学重难点
重点:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
难点:使学生经历探索加法交换律和加法结合律的过程,进行比较和分析,发现并概括出运算律。
教学准备
多媒体课件
教学过程
一、创设情境,提出问题。
1.谈话导入,揭示课题。
师:孩子们,你们骑过自行车吗?骑过多远呢?骑自行车有什么好处呢?(学生回答)
师:骑自行车既有益健康,又环保,有位李叔叔也爱骑自行车,到处去旅行,请看屏幕。
2.创设情境,提出问题。
(1)课件出示情境图,学生观察获得哪些信息。
(2)根据你了解到的信息你能提出什么问题?(学生提问)
(3)学生提出问题:李叔叔今天一共骑了多少千米?
二、合作探究,解决问题。
(一)探究加法交换律
1.列式计算
师:要解决这个问题我们应该怎么算?学生思考后回答。
(教师引导学生用两种方法解决这一问题,56+40=96 40+56=96)
观察上面两个算式你发现了什么?
生答:两个加数交换了位置,和不变。
你能举出几个这样的例子吗?
学生举例。
你发现了什么?
学生回答,教师板书:
两个数相加,交换加数位置,和不变,这叫做加法的交换律。(板书课题)
出示课件,学生齐读。
2.教学用字母表示加法交换律,师:如果我们用a、b表示任意两个加数,怎样表示加法交换律呢?
学生回答,教师板书: a+b=b+a。
3.思考,下面这个等式应用了加法交换律吗?
3+4+5=4+3+5
4.巩固练习,用加法交换律填上适当的数。
65+145= + 109+31= +
44+98= + 346+273= +
学生回答。
5.应用加法交换律在( )中填上适当的数
29+17=( )+29 128+( )=15+( )
( )+( )=323+186 54+a=(a)+( )
指名回答。
6.课堂练习,填一填(课件出示)
(1)两个加数交换( ),和不变,这叫做加法( )。
(2)我们可以用( )的方法验算加法。
(3)加法交换律字母表达式:a+b= +
(4)59+62=62+
(5)78+a=a+
(二)教学例2
1.课件出示情境图
(1).学生观察,说说了解到的.信息。
(2).根据获取的信息提出问题:你知道李叔叔三天一共骑了多少千米吗?请自己先算一算。
(3).学生思考,指名列式。
88+104+96 88+(104+96)
=192+96 =88+200
=288(千米) =288(千米)
哪种算法简单,为什么?
我们可以用等号把这两个算式连接起来吗?(生答:可以)
88+104+96=88+(104+96)
2、课件出示下面算式,先计算,再说说他们的关系。
(1)(69+172)+28○69+(172+28)
(2)155+(145+207)○(155+145)+207
师问:同学们,你们发现了什么?
三个数相加,先把前两个数相加,或者想把后两个数相加,和不变。
学生回答后,教师总结加法结合律。
三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。(板书)
3、教学用符号表示加法结合律。
师:加法结合律用字母表示为:(a+b)+c=a+(b+c),a、b、c分别表示任意三个加数。
三、巩固练习,检测反馈。
1.填一填:
(1)三个数相加,先把( ),或者先把( ),和不变,这叫做加法( )。
(2)加法结合律用字母表示:
(a+b)+c= 。
2.应用学过的定律在下面( )中填上适当的数。
(1)138+(62+365)=( + )+365
(2)( +358)+ ( )= 198+( +42)
四.课堂总结。
1.本节课你学会了什么?(学生回答)
2.师小结:同学们今天的表现非常出色,用自己善于发现的眼睛和聪明的头脑找到了加法算式中的规律,认识并理解了加法交换律和加法结合律,并能初步应用。
板书设计
加法运算定律
加法交换律 两个数相加,交换加数位置,和不变,这叫做加法的交换律。
字母表示: a+b =b+a
加法结合律 三个数相加,先把前两个数相加,或者先把后两个数相加,这叫做加法结合律。
字母表示: (a+b)+c=a+(b+c)
四年级下册教案数学人教版32
教学内容:
人教版四年级下册数学课本58页例1和做一做,59页例2,例3和做一做以及64页练习十的第
1.使学生理解什么是小数的性质,1,2,3题。
教学目标:
学会运用小数的性质把一些小数化简或进行改写;
2.培养学生自主提出问题、自主解决问题的能力以及合作精神、实践能力和创新意识;
3.激发学生对数学的兴趣,引导学生体会数学与生活的联系。
教学重点:
掌握小数性质的含义 。
教学难点:
小数性质归纳的过程 。
教学过程:
一、导入主题
1、学校门口的两家文具店,左边一家的三角板套装售价是2.8元,右边一家的三角板套装售价是2.80元,同学们,你们觉得他们的价格比较起来怎么样?你们是怎么样比较的?
2、为什么2.8元末尾添个0大小不变呢?这是怎么回事呢?这节课我们就来研究这一方面的知识。(板书:小数的性质)
二、探索性质
1、教学例1。
(1)投影出示例1,让学生读题,明确要求。
(2)启发学生根据小数的意义把0.1米、0.10米、0.100米所表示的长度在米尺上标出来(教师投影米尺图),并用整数表示。如果学生有困难,教师以0.1米为例示范:
0.1米表示1/10米,也就是1/10米,即1分米,如图:
关于0.10米、0.100米,让学生独立或讨论完成。
(3)反馈学生完成情况,并把形成的一致意见投影出示:
0.10表示10/100米,也就是10/100米,即10厘米,如图:
0.100米表示100/1000米,也就是100/1000米,即100豪米,如图:
(4)教师肯定学生的学习活动,并把三幅米尺图投影重叠两次,让学生观察后问:你认为0.1米、0.10米、0.100米的大小关系是怎样的?请把道理讲出来。(组织学生分组讨论)
教师板书:因为1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米
(5)引导学生观察等式0.1米=0.10米=0.100米,问:比较这三个小数,你发现了什么?启发学生从左往右、再从右往左观察,初步得出结论:小数的末尾添上0或者去掉0小数的大小不变。(板书)
2、验证性质
(1)同学们自己完成58页“做一做”。
(2)让学生从直观图上比较0.3和0.30的大小。
(3)0.3=0.30这个结果说明了什么?
三、运用性质
1、教学例2
(1)教师对学生说明:像把0.70=0.7,去掉小数点末尾的“0”,就可以把小数化简。(板书:化简)
(2)学生自己完成105.0900=
(3)学生讨论交流105.0900里的其他的0可以去掉吗?为什么?
(4)全班交流、强调小数的性质中说的是“小数的末尾的0”。
(5)完成59页做一做第1题。
A、学生自己完成。
B、全班订正答案。
2、教学例3:
(1)教师说明:利用小数的性质,根据需要可以"把一个数改写成具有指定小数位数的.小数。(板书"改写")
(2)学生自己完成。
(3)大家这样做的根据是什么?
(4)说明任何整数都可以看作小数部分是0的小数。强调把一个整数改写成具有指定小数位数的小数时,不要忘记在个位的右下面点上小数点。
(5)完成59页做一做第2题。
A、学生自己完成。
B、全班订正答案。
3、在应用小数的性质时,要注意什么问题?
(1)讨论下面的3个问题:
A、0.70,去掉0, 小数的大小变不变?
B、4.08去掉0,会怎么样?
C 、0.31的末尾可以添上0吗?
(2)全班齐读小数的性质,强调性质中的“在小数的末尾添上0或者去掉0”.
四、看书质疑。
学生自己看课本58.59页,提出质疑,大家交流解决。
五、巩固练习
1、下面的说法哪个正确,不正确的请举出反例。
(1)小数点后面添上0或去掉0,小数的大小不变。
(2)小数的末尾添上0或去掉0,小数的大小不变。
(3)一个数的末尾添上0或去掉0,这个数的大小不变。
练后问:你认为在小数性质的表述语中,哪几个词语最重要?(教师在"小数"、"末尾"的下面加上着重号)
2、做64页练习十第1、2、3题。
第1题让学生练习后说说哪些位置上的0不能去掉。((1)整数中的0不论何处都不能去掉;(2)小数非末尾的0不能去掉)
六、全课总结
1、这节课你有哪些收获?
2、评价你自己或是某位同学本节课的学习积极性。
四年级下册教案数学人教版33
第一课时:根据方向和距离两个条件确定物体的位置
教学目标:
1、通过具体的活动,认识方向与距离对确定位置的作用。
2、能根据任意方向和距离确定物体的位置。
3、发展学生的空间观念。
教学重点:
能根据任意方向和距离确定物体的位置。
教学难点:
对任意角度具体方向的准确描述。
教学过程:
一、设置情景,导入新课、介绍定向运动及其发展:播放短片
播放后提问:
(1)短片中介绍了一项什么运动?
(2)通过短片介绍,你对定向运动有了哪些了解?
(3)看来参加定向运动还需要具备一些本领,你知道是什么本领吗?(看地图,识别方向)
(4)如果让你来参加这项运动,你会用什么工具来确定方向?
二、自主探究、了解公园定向运动图(出示公园定向运动图)。
从这张图上你知道了哪些信息?
2、探索1号点的位置。
运用以前学过的知识得到大致方向。
A、训练加方向标的意识:加个方向标有什么好处?
B、突出以起点为观测点:为什么把方向标画在起点?小组讨论、质疑:
(1)、知道1号点在起点的东北方向就可以出发了吗?
(2)、如果这时就出发可能会发生什么情况?
(3)沿什么方向走就能保证更准确、更快的找到目的地。
研究时,可以用上你手头的工具。
3、练一练:你说我摆,为小动物安家。
(课前剪好小图片,课上动手操作。)
例:我把熊猫的家安在 偏
,的方向上。
例:我把熊猫的家安在西偏北30度的方向上,熊猫摆在哪?
讨论:为什么猴子的家在西偏南30度,而小兔家在南偏西30度的方向?(现在有两种不同的说法,通常我们要从角度比较小的这个方向说。)
4、解决问题,寻找得出距离的方法。如果你来参加这项运动,以每分钟行进200米,你要走几分钟能到达1号地?
图上没有直接标距离,你有什么办法解决它呢?
仔细观察地图,你发现了什么?小组试一试解决。
三、巩固练习:
1、以雷达站为观测点,填一填。
护卫舰的位置是
偏
度,距离雷达站
千米。
巡洋舰的位置是
偏
度,距离雷达站
千米。
鱼雷艇的位置是
偏
度,距离雷达站
千米。
2、以电视塔为观测点,按要求填空。
文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。
四、课堂小结:今天这节课你有什么收获?与同学们一起来分离你的收获?
五、课后延伸:
游乐场要新建两个游乐项目:一个在观览车西偏北40o方向上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20o方向上,约150米处。请你在平面图上标出这个新项目的位置。
第二课时:根据方向和距离,在图上绘出物体的位置
教学目标:、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
教学重点:会根据方向和距离,在图上标出物体的位置。
教学难点:绘制示意图。
教学过程:
一、复习引入通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。(1)停车场在广场的
方向,距离大约是
米。小红家在广场的 偏
方向,距离大约是
米。
(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。
二、自主探究新知
、出示学校的'录相或图片
问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?
出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。
2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
3、小组汇报完成平面图绘制的计划,教师进行梳理:
(1)绘制平面图的方法:
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
4、小组活动,绘制平面图。
5、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?
教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。
(2)比较各个平面图,为什么有的图大,有的图小?
小结:1厘米表示的大小不同,图的大小也不同。
三、巩固练习:
1、完成书上习题21页3、4题并订正。
2、在纸上设计小区,并说明各个建建筑的位置。
老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等
四、课堂小结:
学习了这个内容后,你觉得还有什么困难?
第三课时:体会位置关系的相对性
教学目标:、通过教学使学生以不同的地点为观测点判断方向。
2、在学生学会确定任意方向的基础上,使学生体会位置关系的相对性。
3、“做一做”呈现了两名学生合作判断对方所在方向的活动情境,使学生进一步体会位置关系的相对性。
教学重点:为什么在描述两个城市位置关系的时候会有两种方式。
教学难点:使学生进一步认识到位置关系的相对性。
教学过程:
一、创设情境,引入新课
、观察书上插图
小组讨论:
(1)用自己已有的方位知识说一说这些城市的位置关系。
(2)讨论后每组选出一名同学在班内汇报。
2、汇报讨论结果
(1)首先找到北京和上海在地图上的位置。
(2)确定以谁为观测点。
(3)用语言描述北京和上海的具体位置。
(以北京为观测点,上海在北京的南偏东约30度的方向上。以上海为观测点,北
京在上海的北偏西30度的方向上。)
3、质疑解难
刚才大家确定的同样是上海和北京这两个地点,描述它们位置的时候为什么有那么大 的差别?一个是南偏东约30度,一个是北偏西30度?
二、复习巩固
、完成做一做:
教师可以在教室地面上画一些长方形,并连接对角线,量出各条线段的长度,标出度数,让学生分别站在不同的顶点上进行练习。
(1)组织学生做游戏(可两人一组也可四人一组)
(2)让每个学生充分参与到活动中来,人人开口说一说。
书中的做一做中的角度是45度,比较特殊,可以说成是你在我的东偏南45度,也可说南偏东45度,或你在我的西偏北45度,也可以说是北偏西45度,还可以说成是“东南方向”。
三、复习反馈、完成练习第1、2两题
2、当堂汇报
(北京在哈尔滨的南偏西的方向上,哈尔滨在北京的北偏东的方向上。)
(学校在我家的南偏西的方向上,距离约是900米。)
(你家在学校的北偏西的方向上。)(小芳)
四、课堂小结
这节课你的最大收获是什么?你还有什么不懂的地方?
第四课时:描述并绘制简单的路线图
教学目标:、能用语言描述简单的路线图。
2、在合作交流中能绘制简单的路线图。
3、体会路线图在实际生活中的广泛应用。教学重点:体会定向运动行走过程中的观测点在不断变化。
教学难点:根据观测点的变化来重新确定方向标观察物体的位置。
教学准备:每个(小组)学生一个越野路线图,每人一张白纸(绘图用)
教学过程:
一、情境引入
、山地越野:描述行走路线
小组讨论:
(1)、作为越野队员我们将怎样确定越野路线?
(2)、我们是怎样确定方向和路程的?
2、继续描述行走路线
讨论:为什么要到达一个目标就重新画出方向标?
3、这个越野车队,四个赛段的时间分别是15分钟、5分钟、35分钟、5分钟,他们走完全程的平均速度是多少?10千米
4、观察行走路线后回答讨论:
为什么第一赛段的路程与第三赛段路程长短差不多,时间却相差一倍多?车坏了、路是上坡、路上障碍物多、路上休息了一些时间……
5、打开书本P23,观察书上的校园定向运动路线图,根据上面的路线图,说一说每一赛段所走的方向和路程。
二、沙漠驱车越野:绘制简单路线图
根据所给信息画出越野路线、在起点的东偏北40°方向距离350千米的地方是点1
2、在点1的西偏北25°方向距离200千米的地方是点2
3、终点在点2的西偏南20°方向距离它300千米的地方
绘图后回答:(1)点1的西北方是
,终点在起点的 方向,点2在起点的 方向。
(2)说出具体路线:
从起点出发,先向
偏
度方向走
km到点1,再向
偏
度方向走
km到点2,最后向
偏度方向走
km到终点。
三、巩固练习、做一做,根据同伴的描述,画出路线示意图。
注意:绘图前,先定下出发时的位置。
2、第26页第5题,根据描述把电车行驶的路线图画完整。
在练习的过程中,多注意交流、展示,最好能够用到实物投影仪,把学生绘制出的图进行展示,有利于比较、改进。
四、开放题:小小动物园的参观路线。
学生自行设计,设计后并写出如何走,对一些绘制较好的图进行展示、评比、加分。
四年级下册教案数学人教版34
设计说明
课程内容的选择要贴近学生的实际生活,有利于学生的体验和理解、思考与探究。在实际生活中,蕴涵着大量的用小数加减法解决的问题。因此,在本节课的教学设计中,选取了学生熟悉的、具有一定联系的、符合学生认知特点的生活素材来开展教学活动。
1.结合情境进行有效学习。
《数学课程标准》中指出:数学与生活紧密联系,数学来源于生活,而又服务于生活。在本节课的教学过程中,通过呈现两名同学在书店购买图书的全过程,引入小数的加减法。通过让学生发现生活中的数学问题,寻求解决问题的方法,使学生掌握小数加减法的计算方法,从而培养学生学习数学的兴趣。
2.自主探究,实现知识迁移。
上课伊始,通过情境的创设,有目的`地对学生的思路进行引导。当学生在对所提的问题进行解决时,让学生自己去探究算法。在学生的汇报中追问:“怎样才能保证相同的数位对齐呢?”学生马上就会说出只要小数点对齐就可以了。这样学生在知识的学习上自然是水到渠成,并且印象深刻。由于有了之前对整数加减法的认识和探究中适时的点拨,学生很自然地实现了从整数加减法到小数加减法的知识迁移。
课前准备
教师准备 多媒体课件
教学过程
⊙创设情境
出示教材71页主题图。
师:星期天,小丽和小林相约到书店买书。小林买了一本词典,小丽买了一本《数学家的故事》和一本《童话选》。
师:读书可以开阔我们的视野,陶冶情操。在小丽和小林买书的情境中,还蕴涵着许多的数学知识,让我们一起去探究吧!(板书课题)
设计意图:通过出示主题图,让学生感受数学学习的价值及数学知识在生活中应用的广泛性。
⊙探究新知
1.提出问题。
根据主题图提供的信息,提出问题:小丽买这两本书一共花了多少钱?
2.探究小数加法的计算方法。
(1)课件出示两本书的价钱:《数学家的故事》6.45元,《童话选》4.29元。
(2)列式:6.45+4.29。
(3)比较这道题和以前学习的加法算式有什么不同。
师:整数加减法在列式计算时要注意什么呢?
预设
生1:相同数位要对齐,从个位算起。
生2:哪一位相加满十就要向前一位进1,哪一位不够减就要向前一位借1当10,然后再算。
师:整数加减法的计算方法是否同样适用于小数加减法呢?请同学们按照课堂活动卡小组合作进行探究。
(4)学生汇报。
生1:通过讨论,我们小组发现:小数加法的计算方法和整数加法的计算方法应该是一样的,要保证相同计数单位上的数相加,在列竖式计算时,百分位上的5要和9对齐,十分位上的4要和2对齐,个位上的6要和4对齐,计算结果是10.74元。
生2:通过讨论,我们小组发现:在计算小数加法时,相同数位要对齐实际上就是小数点要对齐,小数点对齐了,相同数位也就对齐了。
师:同学们的发现很有道理,能够通过整数加法的计算方法类推出小数加法的计算方法,真了不起!的确是这样,在计算小数加法时一定要注意小数点要对齐,也就保证了相同数位对齐。
3.探究小数减法的计算方法。
(1)根据这两本书的价钱再提出一个减法问题。
预设
生:《数学家的故事》比《童话选》贵多少钱?
(2)独立列式解决这道题。
(3)学生汇报。
生1:我列的算式是6.45-4.29=2.16(元)。
生2:计算小数减法时,相同数位相减,不够减的时候要向前一位借1当10,然后再算。
师:为什么要把小数点对齐?(把小数点对齐也就是把相同数位对齐)
(4)教师小结:计算小数加减法时,先把各数的小数点对齐,也就是把相同数位对齐,再按照整数加减法的计算方法进行计算,最后在得数里对齐横线上的小数点点上小数点。
设计意图:学生自主提出问题,自主解决问题,自主归纳小数加减法的计算方法,这一过程充分尊重了学生已有的知识经验,提升了学生迁移类推的能力,使学生感受到数学知识的特点。
四年级下册教案数学人教版35
教学内容
人教版四年级下册教材第34、35页的例2、例3、例4及“做一做”。
内容简析
本节课借助学生已有的知识经验及生活经历,在生活中感受小数的读法和写法,通过大量的感性知识与数学活动,抽象、概括、提炼出小数的数位顺序表,使学生明确小数的数位名称及数位顺序,进一步体会生活中处处有数学的理念,从而达到巩固小数意义的目的。
教学目标
1.理解小数的数位顺序表,知道小数的构成及小数各位上的数的含义。
2.掌握小数的读法与写法,会读、写小数,进一步理解小数的意义。
3.培养学生学习数学的兴趣和刻苦钻研、探求新知的良好品质。
教学重难点
教学重点:进一步掌握小数的意义,能比较熟练地读写小数。
教学难点:正确地说出小数部分每一位上的计数单位。
教法与学法
1.采用的教法是直观演示法、情景体验法和点拨法。从表象到抽象、感性到理性的'设计层次符合小学生的认知规律,能有效地培养学生的自主学习能力。
2.具体的学法是合作讨论法、尝试与体验法、练习法,帮助学生养成好的自学习惯,学会与他人合作学习。
教学过程
一、情景创设,导入课题
生活情景引入:同学们,有个小朋友遇到了困难,你们愿意帮忙吗?小红和妈妈逛超市,但她不认识价格表。(课件出示播放超市物品与价格)
观察物品价格,指名说一说。(结合学生回答板书:5.98、0.85和2.60)
超市里的这些标价有什么共同特点?
揭示课题:超市里商品的价格都是用小数来表示的,这些小数该怎样读写呢?这节课我们将一起研究小数的读法和写法。(板书课题)
【品析:从学生熟悉的生活场景入手,容易引起学生的学习兴趣,也使数学与生活的联系更为紧密,数学学习显得更有意义。】
激趣引入:
抢答题:地球上长的最高的动物是什么?(学生抢答,猜测长颈鹿的身高)
出示教材第34页的情境图,学生读图,找出数学信息,教师板书小数。
【品析:这样的导入设计是为了激发学生的学习兴趣以及想要学的愿望,同时又为后面的学习提供了具体数据。】
故事引入:今天一大早,熊二就吵着要吃蜂蜜,熊大告诉它,只有回答出它提出的几个问题才会有蜂蜜吃。你愿意帮助熊二吗?
1.读出下面各数。
234 7093 31 10000 38950 0.7
2.回忆一下:你是怎样读出这些数的?整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?(一<个>、十、百、千……)
3.导入:在同学们的帮助下,熊二顺利拿到了蜂蜜。你知道吗,小数和整数一样,也有计数单位,也按照一定的顺序排列起来,这节课我们就来研究一下小数的数位顺序。
【品析:由学生喜爱的动画故事入手,容易引起学生的学习兴趣,同时又复习了整数的数位顺序和计数单位,为研究小数的数位顺序表打下了基础。】
二、师生合作,探究新知
1.教学小数的数位顺序表。
(1)观察教材第34页例2的主题图,从图中你得到了哪些信息?
(师生交流后,板书1.8、5.63、12.378)
(2)观察并思考:这些小数和我们以前学的数一样吗?这些小数是由哪几部分构成?
小结:像1.8、5.63、12.378……这样的数都是小数,这些小数都由三部分组成:整数部分、小数点和小数部分。
(板书:整数部分、小数点、小数部分)
(3)提问:小数点左边一位是什么位?计数单位是什么?表示什么?小数点右边一位的计数单位又是什么呢?
学生交流讨论:
四年级下册教案数学人教版36
设计说明
本节课的教学围绕复式条形统计图精心设计思考题,先引导学生讨论,然后总结出复式条形统计图的优点及绘制方法。本节课是从以下三个方面进行设计的。
1.创造性地选择例题素材。
教材所呈现的内容(某地区城乡人口数量)与本地区学生的生活实际有差距,因此对教材例题进行了改编。这种以学生熟悉并感兴趣的情境导入新课的方式,达到了激趣引入、复习旧知的目的,并对学生动手绘制单式条形统计图的练习进行改进——两个单式条形统计图的直条分别采用不同的颜色或底纹。从课堂效果来看,多数学生能说清楚单式条形统计图的结构及绘制方法,从而为复式条形统计图的学习做好铺垫。
2.让学生学会思考、与他人交流和聆听他人的意见。
在教学设计上,通过演示把两个单式条形统计图合并成一个复式条形统计图的过程,引导学生观察、发现图例,从而突破教学难点。教学时首先给学生留下足够的思考空间,学生可以在教师的引导下,通过自主探究与合作交流完成复式条形统计图的绘制。然后提问“它与单式条形统计图有什么区别?”引起学生的讨论和交流,在讨论和交流中学生聆听和进行简单的辩论。最后引导学生根据新的统计图提出问题和解决问题,使学生在观念和知识上都得到提升。从本节课的.整个教学过程来看,都是学生在自主探究,通过合作交流掌握知识,教师在教学过程中只是活动的组织者、引导者和协调者。
3.自主学习,关注类推能力的培养。
学生掌握纵向复式条形统计图之后,出示不完整的横向复式条形统计图,让学生根据已学知识,运用类推的方法自己独立补充完整,并通过交流汇报完善知识结构。
课前准备
教师准备多媒体课件
学生准备不完整的条形统计图卡片
教学过程
⊙情境引入,激发兴趣
调查本班同学喜欢吃的水果情况(梨、苹果、橘子、香蕉),现场统计,每人只选一种。
1.教师根据学生的选择,制成统计表。
2、你能根据统计表中的数据绘制两个纵向单式条形统计图吗?
(组织学生绘制统计图)
3.小组内交流单式条形统计图的绘制方法和步骤。
(1)画纵轴和横轴。
(2)确定单位长度。
(3)写类别,画直条。
设计意图:先让学生在生活中收集信息,激发学生的学习兴趣。然后让学生根据统计表中的信息完成单式条形统计图,并复习单式条形统计图的绘制方法,由此导入新课。这样的设计既激发了学生的求知欲望,又为新课的学习做好了铺垫。
⊙探究新知
1.课件出示绘制好的两个单式条形统计图。
四年级下册教案数学人教版37
课题名称 小数的意义
课标要求 结合具体情景理解小数的意义,会进行小数、分数的转化。
学习目标
1.通过动手操作,学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
2.知道小数的计数单位和每相邻两个计数单位之间的进率。
教学重点 理解一位、两位、三位小数的意义,知道每相邻两个计数单位之间的进率是10。
教学难点 理解一位、两位、三位小数的`意义。
学习过程
一、谈话导入
师:同学们,我们在三年级的时候已经对小数有了初步的认识,今天我们继续学习小数的意义。那同学们还记得小数长什么样子?你能举个例子说一说吗?
预设:0.3
师:谁能说一个和他不一样的?
预设1:0.47
预设2:0.356
师:同学们说了这么多,那老师说几个,我说,你们来读(1.8、2.75、4.702)你能将这些小数分分类吗?并且说一说你分类的依据是什么?
预设:(0.3、1.8)(0.47、2.75)(0.356、4.702)我是这样分的,看小数点后面,有一位的分在一起,有两位的分在一起,有三位的分在一起。
师:我们把第一组给他起个名字,叫一位小数,第二组叫两位小数,第三组叫三位小数。
二、探究新知
(一)0.1表示什么
师:今天学习小数的意义,要想知道0.3表示什么?我们得从研究0.1表示什么开始。
1.请同学们拿出准备好的正方形纸,如果把这张纸看作“1”,怎样表示出0.1呢?完成学习单第一题。
学生操作。
汇报:将这张纸平均分成10份,取其中的1份是,用小数表示就是0.1。也就是0.1就表示,可以用等号连接。(板书)
2.谁能借助你手中的正方形纸说一说,0.3表示什么?
预设:将这张纸平均分成10份,取其中的3份是,用小数表示就是0.3。也就是0.3就表示。(追问:0.5里有几个0.1?)
3.你还想表示哪个小数?
预设:我还想表示0.8。将这张纸平均分成10份,取其中的8份是,用小数表示就是0.8。也就是0.8就表示。
4.观察这三组,你发现一位小数和分数有什么关系?
预设:一位小数都表示十分之几。
(二)0.01表示什么
师:现在我们探究出一位小数表示十分之几,那么两位小数、三位小数又表示什么?按照这个思路,完成导学单第二题。
小组讨论。
汇报:
1.两位小数表示什么,应先从研究0.01开始,我们把这张纸平均分成100份,取其中的1份是,用小数表示就是0.01。也就是0.01就表示。
2.0.06表示,它里面有6个0.01。
3.我还想表示0.73。我们把这张纸平均分成100份,取其中的73份是,用小数表示就是0.73。也就是0.73就表示。
4.小结:我们发现两位小数都表示百分之几。
(三)0.001表示什么
预设:0.001表示。我们把这张纸平均分成1000份,取其中的1份是,用小数表示就是0.001。也就是0.001就表示。
师:平均分成1000份是不不好分呀,我们找电脑帮帮忙。(ppt出示正方体)
师:现在从这1000份中取出365份,用分数怎么表示?写成小数呢?里面有多少个0.001?你还能写出哪些小数?
观察算式,你发现了什么?
预设:三位小数都表示千分之几。
(四)认识计数单位
ppt出示:十分之一、百分之一、千分之一…….都是小数的计数单位。通过ppt演示,学生发现每相邻两个计数单位之间的进率是10。
三、课堂检测
1.写出下面图形所表示的分数和小数。
2.哪两只手套是一副,用线连一连。
3.填空
0.8里面有( )个0.1
0.32里面有( )个 0.01
0.620里面有( )个0.001
0.1235里面有( )个0.0001
4.在直线上标出下面各数的位置。
0.4 2.6 1.3 3.85
四、课堂小结
师:请同学说一说,这节课你都收获了哪些知识?
五、板书设计
板书设计:小数的意义
一位小数 两位小数 三位小数
十分之几 百分之几 千分之几
0.1= 0.01= 0.001=
0.3= 0.06= 0.365=
0.8= 0.73= 0 .798=
四年级下册教案数学人教版38
教学目标:
1、了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、解决问题,初步形成解决此类问题的一般性策略。
2、通过自主探索,合作交流,培养学生的合作意识和逻辑推理能力,体会解题策略的多样性,渗透化繁为简的思想。
3、感受古代数学问题的趣味性,提高学习数学的兴趣。
教学重点:
理解掌握用不同的方法解决问题的不同思路和方法。
教学难点:
用不同的方法解决实际问题。
教具准备:
多媒体课件、学习单等。
教学过程:
一、创设情境、揭示课题
1、师:同学们,今天老师很高兴能跟大家一起度过一堂生动有趣的课。同学们有没有信心能上好这堂课?真棒!请同学们带着你们的`信心和热情跟老师一起有进数学广角。我们一起来学习一道我国古代非常有名的数学趣题,“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题。)这四句话是什么意思呢?抽生回答。(笼子里有若干只鸡和兔,从上面数,有35个头。从下面数,有94条脚。鸡和兔各有几只?)(PPT展示今意。)
2、这类题我们把它叫做什么问题好呢?(“鸡兔同笼”问题。)板书。其实,鸡兔同笼问题记载于《孙子算经》一书中,早在1500多年前就有古人在研究它,我们现代人还在研究它,而且还有很多外国人也在研究它。那么这个流传了上千年的问题到底有什么魅力,使得那么多的人乐此不疲地去解决这个问题呢?相信同学们学习了这节课,你们就会揭开这个秘密。老师再问一次大家:你们有没有信心把这节课的内容学好?
二、合作探究、学习新知
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
为了便于研究,我们可以先从简单的问题入手,来探讨解决这类问题好吗?出示例1
1、师:请大家读题。思考:从上面数,有8个头,从下面数,有26只脚,分别是什么意思?所求问题是什么?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只? 师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2、列表法
(1)猜想
要求鸡和兔各有几只,咱们不妨猜一猜,好吗?(学生猜)
(2)验证:
到底谁猜对了呢?我们来验证一下。解决问题要有理有据,不能随意猜。我们应该抓住什么样的条件来验证我们的猜测是否正确?首先要知道鸡和兔一共有8只,其次鸡的腿和兔的腿一共有26只,所以我们必须要把鸡的腿和兔的腿加起来看看等不等于26。这两个条件必须同时满足才是正确答案。
现在请同学们拿出你们的表格把你们的猜测的数据按顺序填到表格中并找到正确答案。学生独立完成表格,之后交流完成情况,出示大屏幕的表格中。
(像这样把我们的猜测按一定的顺序列成表格,这种方法叫列表法)。观察这个表格,你找到答案了吗?答案是怎样的。
活动二:探究用假设法解决“鸡兔同笼”问题。
师:列表的方法可以解决鸡兔同笼问题,但是如果数据很大,会发生什么情况?(繁琐)。有没有其他方法可以解决?请同学们四人一小组探讨一下还有没有其他方法可以解决。
设全都是鸡,每只鸡有两只脚 2×8=16(条)8只鸡共长几条脚? 26-16=10(条)表示什么?所有兔子少的脚 4-2=2(条)2表示什么?每只兔子少的脚
10÷2=5(只)兔表示10条脚,每只鸡上添2只脚变成兔子,所以共有5只鸡变成了兔子,因此兔子有5只8-5=3(只)鸡表示总数减兔数等于鸡数
可能还有些同学有点迷糊,我们用画图法直观理解一下。
(1)请画8个圆表示鸡,每只鸡2只腿,一共有16只脚。
(2)还差10只脚,每只鸡再加两只脚变成兔子,共有5只鸡变成5只兔子。
(3)最后剩下的3只就是鸡。
现在大家清楚了吗?在引导学生回顾一遍。先怎么想?假设全是鸡,用总脚数减去鸡的脚数求出它们
的相差数是10,再用相差的数除以每只鸡相差的2只脚,就得到了兔的只数,最后用总只数减去兔的只数就是实际鸡的只数。这种方法好吗?给这种方法起个名字,叫什么好呢?假设法。
②:如果假设全是兔,你们会解吗?好这个方法就留给你们课后完成。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
发散思考、加深理解:
现在我们能用上面的方法解决古人流传下来的问题了吗? 出示:鸡兔同笼,有35个头,94只脚,鸡兔各有几只? 学生独立自主完成
小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结
师:通过今天的学习,你有哪些收获?
五、作业布置
课本106页练习二十四第一题
四年级下册教案数学人教版39
学习内容:P61页例5
学习目标:通过合作探究,总结出小数点位置的移动引起小数大小的变化规律。
学习重难点: 小数点位置的移动引起小数大小的变化规律
一、【知识链接】
1、小数的性质是什么?
2、怎样比较小数的大小?
3、比较下列每组数的大小。
0.54○0.540 2.8○2.800 3.26○32.6 6.19○61.9
小结:一个小数在它的末尾添上0或者去掉0,小数的大小没有变,是因为没有移动小数点的位置;小数点的位置移动了,小数的大小也发生了变化。
二、【自主学习】
自学课本第61页例5,回答问题:
① 0.009米=( )毫米
② 0.09米=( )毫米
③ 0.9米=( )毫米
④ 9米=( )毫米
三、【合作探究】
1、从上往下观察,从0.009米变成0.09米,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。因此,小数点向 移动一位,小数就 到原数的 倍。同理,比较 ①和③ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。比较 ①和④ ,小数点向 移动了 位,即长度由 毫米变成了 毫米,长度 到原数的 倍。
从下往上观察,小数点的位置依次向 移动一位、两位、三位,这个数就 到原数的 、 、 。
2、练习:4.5的小数点向左移动一位是( ),向右移动两位是( )
0.305的小数点向右移动( )是3.05,向左移动( )是0.0305,向( )移动( )是305,向( )移动( )是30.5。
3、小结:小数点移动要牢记:右移 ,左移 。移动一(二、三……)位是扩大(或缩小)10(100、1000……)倍,位数不够用 补位。
四、【拓展延伸】
原数扩大还是缩小由什么决定? 移动的位数决定什么?
五、【课堂小结】
小数点向右移动一位、两位、三位……,这个数就 到原数的 、 、 ……。小数点向左移动一位、两位、三位……,这个数就 到原数的' 、 、 ……。
六、【课堂检测】
1、填空
(1)把6.2扩大( )倍是62。
(2)把59缩小到它的( )是0.59。
(3)0.28去掉小数点得( ),原数扩大了( )倍。
(4)73.21变为0.7321,原数就( )。
2、判断
(1)、0.8的小数点向右移三位,原来的数就缩小到了它的1/1000( )
(2)、3.69扩大1000倍是36.9。 ( )
(3)、把一个数缩小到它的1/10,就要把这个数的小数点向左移动一位。( )
四年级下册教案数学人教版40
一、教学内容:
小学数学人教版四年级下册教材第24——25页,例5和例6
二、教学目标:
(1)理解并掌握乘法交换律和结合律的意义。
(2)学会运用乘法交换律验算乘法。
(3)掌握用字母表示乘法交换律和结合律。
三、教学重点、难点:
理解并掌握乘法交换律和结合律。
四、教法与学法教法:
创设情境,质疑引导。学法:类比推理。
五、教学准备:
多媒体课件
六、教学过程:
(一)情境导入
师:今天我们又在多功能教室一起上一节数学课,你们兴奋吗?想在同学们面前好好展示自己吗?那么就请同学们带着愉快的心情和我一起走进今天的数学课堂。请同学们看大屏幕,看看谁是最棒的!
1、在()里填上适当的数。(课件)
2、这两组算式分别运用了什么运算定律呢?
3、引入新课:看来同学们对于加法的交换律和结合律都掌握的非常好,你能说说什么叫加法的交换律和加法结合律吗?用字母怎样表示呢?你知道我们为什么要学习这些运算定律吗?那么请同学们大胆的猜想一下,在乘法运算中有这样的运算定律呢?(有)。看来同学们都很有胆量,敢于猜想,对,乘法也有这样的运算定律,今天这节课我们就一起来探讨乘法交换律、结合律。
师板书课题:乘法交换律、结合律。
(二)探究新知
教学乘法交换律、结合律
(1)出示主题图,引导学生观察。(课件)师:你们知道3月12日是什么节日吗?(植树节),同学们知道的可真多呀!你们植过树吗?那么你们知道植树要做哪些事情吗?老师这有一副同学们在植树的情境图,(课件)请同学们仔细观察,说说你从这幅图中知道了哪些数学信息?(一共有25个小组,每组里4人负责挖坑、栽树)。
(2)根据这些信息,谁能提出一个数学问题吗?
1、教学例5师:根据同学们提出的问题,下面我们来解决这个问题:负责挖坑、种树的一共有多少人?
(1)想一想:怎样列式解答这个问题呢。指名汇报:4×25=100(人)25×4=100(人)
师:请同学们仔细观察这两个算式,与小组的同学交流一下,你们有什么发现?
师板书4×25=25×4
(2)那让我们一起再看一组算式真的是像你刚才发现的那样吗?(课件)。
(3)师:还能举出这样的例子吗?谁能总结归纳这个规律?(两个数相乘,交换两个因数的位置,积不变。)你们通过猜想、验证总结的规律对不对呢?请看小博士是怎么说的?(课件乘法交换律)用字母该怎么表示呢?(课件)师板书乘法交换律axb=bxa
(4)请同学们用乘法交换律填上合适的数。(课件)
(5)请同学们做一道题,并运用乘法交换律验算。(课件)
2、教学例6
师:刚才同学们通过共同探讨,得出乘法算式中同样也有交换律,那么乘法中会不会也有结合律呢?下面我们继续观察植树情境图。(课件)师:从情境图中,你还可以知道哪些数学信息?根据这一数学信息你能提出一个新的数学问题吗?下面我们就来解决:这些树一共要浇多少桶水?
(1)要解决这个问题,需要哪些信息呢?请同学们仔细观察这幅图。
(2)怎样列式呢?(25×5)×2或者25×(5×2)说一说你是怎样想的?两种算法有什么相同之处,有什么不同之处呢?
(3)通过上面的计算你发现了什么?(计算顺序不同,但结果相同,可以用等于号连接起来。)那么(25×5)×2()25×(5×2)中间应填什么符号呢?
板书(25×5)×2()25×(5×2)
师:我们观察一下这组算式是这样的吗?(课件)
(4)你还能举出这样的例子吗?从这些等式中,你发现了什么规律?你发现的`和小博士发现的一样吗?课件(乘法结合律)
(5)指名汇报:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这就是乘法结合律。师板书:乘法结合律
(6)师:如果用字母a、b、c分别表示这三个因数,你能写出乘法结合律吗?
师板书(a×b)×c = a×(b×c)。
(7)用乘法结合律填上合适的数。(课件)指名汇报
3、比一比,议一议。想一想,到现在为至,我们学习了哪些运算定律?用字母如何表示呢?看看这些运算定律公式,你发现了什么?(交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
(三)巩固练习
这节课学习的内容你还有什么不明白的吗?你还有什么问题吗?
1、下面老师给你们一个展示自己的机会,请看大屏幕。(课件)先填空,再想想应用了什么运算定律。
2、口算发现规律(课件)知道了乘法中的这三对好朋友,运用今天我们学习的新知识,我们就可以进行简便计算了。
3、下面的题怎样简便怎样计算,并说说运用了哪些运算定律?
4、第四小学新建了一幢4层的教学楼,每层有5个教室。每个教室放映24张课桌,一共需要多少张课桌?
5、拓展练习
6、第四小学有6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23个人参加。一共有多人参加比赛?
(四)总结收获
师:这节课你们有什么收获呢?课件出示并总结
四年级下册教案数学人教版41
教学目的:
●通过动手操作,会按角的特征及边的特征给三角形进行分类。
●培养学生动手动脑及分析推理能力。
教学重点:
会按角的特征及边的特征给三角形进行分类。
教学难点:
会按角的特征及边的特征给三角形进行分类,。
教学用具:
量角器、直尺。
教学过程:
一、引入:
我们认识了三角形,三角形有什么特征?今天这节课我们就按照三角形的特征对三角形进行分类.怎样分?
二、新课:
1小组活动:
(1)出示小片子,观察每个三角形.可以动手量一量,分工合作。根据你发现的特点将三角形分类。
2按角分的情况
引导学生明确:相同点是每个三角形都至少有两个锐角;不同点是还有一个角分别是锐角、钝角和直角.
我们可以根据它们的不同进行分类
(1)分类.
根据上边三个三角形三个角的特点的'分析,可以把三角形分成三类.
图①,三个角都是锐角,它就叫锐角三角形.(板书)
提问:图②、图③只有两个锐角,能叫锐角三角形吗?(不能)
引导学生根据另一个角来区分.图②还有一个角是直角,它就叫直角三角形,图③还有一个钝角,它就叫钝角三角形.
请同学再概括一下,根据三角形角的特征可以把三角形分成几类?分别叫做什么三角形?
教师板书:
三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形;
有一个角是钝角的三角形叫做钝角三角形.
(2)三角形的关系.
我们可以用集合图表示这种三角形之间的关系.把所有三角形看作一个整体,用一个圆圈表示.(画圆圈)好像是一个大家庭,因为三角形分成三类,就好象是包含三个小家庭.
(边说边把集合图补充完整.)
每种三角形就是这个整体的一部分.反过来说,这三种三角形正好组成了所有的三角形.
(3)三角形中至少要有两个锐角,所以判断三角形的类型,应看它的内角.……
问:还有没有其他的分法?
3按边分的情况:
我发现有两条边相等的三角形,还有三条边都相等的。
师:我们把两条边相等的三角形叫做等腰三角形,相等的两条边叫腰,另外一条边叫底。
师:把三条边都相等的三角形叫等边三角形。
分别量一量等腰三角形和等边三角形的各个角,你有什么发现?
从红领巾、三角板、慢行标志中找一找哪里有这两种特殊的三角形?
三巩固练习:
1.判断题.
(1)由三条线段组成的图形叫三角形.
(2)锐角三角形中的角一定小于90°.
(3)看到三角形中一个锐角,可以断定这是一个锐角三角形.
(4)三角形中能有两个直角吗?为什么?
2.87页7题猜一猜小组同学模仿练习
四作业
四年级下册教案数学人教版42
学习内容:
小数的意义和产生,课本32-33页内容。
学习目标:
1、我能通过观察知道小数的产生。
2、我能通过分析明白小数的意义。
3、我知道小数的计算单位及单位间的进率。
学习重难点:
小数的意义和计算单位及进率
学习过程:
课前谈话
孩子们们,平时喜欢猜谜语吗?(喜欢)
老师这里有一个谜语,大家想猜一猜吗?(可以)
请竖起你的小耳朵,认真听,看谁能猜中?
生来公平,拿在手中,要问长短,它最分明。打一度量器具。
生猜尺子。
师:他猜尺子,大家同意吗?你猜中了,给他掌声鼓励!
咱们这节课中就让尺子来帮助我们进行学习,那让我们上课吧!
一、教学小数的产生:
首先,我想先考考大家的估算能力可以吗?那好,请大家估计一下课桌高度是多少?谁先说?学生--
课桌的高度大约1米多一些,大家估计的差不多,可见咱们班同学的估算能力还是很好的!
师:那如果我们想知道课桌准确的高度该怎么办呢?生:用尺子
师:哎,尺子。孩子们,生活中我们对尺子已经非常的熟悉了吧,下面就请大家用手中的米尺测量一下身边物体的长度。请同桌两人合作测量。师:哪个孩子先来汇报测量数据。
师:还有谁愿意起来汇报,还有吗?教师有选择的板书:1米8分米,2分米5厘米等二三个即可。
教师:通过刚才同学们的汇报,我们可以知道,课桌的长度、高度,数学课本的长度,铅笔的长度都不是整米数,像这样不能得到整数结果时,我们常用小数来表示。例如课桌的长度可以写成1.2米,数学课本的长度为0.35米。
在生活中,人们进行测量和计算时,往往不能正好得到整数的结果,于是人们就发现和运用了小数。
点击出示“你知道吗?”课件展示小数的历史。
这节课就让我深入研究一下小数的意义。(板书课题)齐读课题。
设计意图:适当复习有关记量单位的有关知识,唤醒学生已有的知识经验,为新知识的学习奠定一定的知识和心理方面的基础。
二、探究小数的意义:
1、认识一位小数
师:孩子们,想一想米尺上面有哪些不同的长度单位,我听同学们说了很多,哪位同学能按照从大到小的顺序说一说呢,板书:米,分米,厘米,毫米。师:我们在进行测量长度时,不够1米时,需要把1米平均分成10份,100份,1000份,用较小的长度单位来测量。孩子,请思考,把1米平均分成10份,每份是1分米,也可以说是10厘米,这一份的长度就是1米的十分之一,是十分之一米。
师:孩子们,请看你手中的米尺,观察!从0到10,这是几分米?生:1分米,师:用米做单位,用分数怎么表示呢?生:十分之一米。师:还可以用什么数表示呢?师:十分之一米也可以写成0.1米。板书
师:请同学们再继续观察手中的米尺从0到30,是几分米,十分之几米?用小数怎么表示?哪个孩子想到了?来这个孩子你说,说说你的想法?说的'很好孩子,板书
师:那从0到70,是十分之几米呢?小数如何表示?孩子,你来,解释下好吗?解释的真清楚。板书
师:孩子观察这组分数有什么共同的特点?板书:分母是10,咱们班孩子特别善于观察,来孩子再观察这组小数有什么共同特点?像这样小数点后面只有一位的小数叫一位小数。板书:一位小数。
师:请同学们告诉我,十分之一米和0.1米,十分之三米和0.3米,十分之七和0.7之间有什么关系?如果让你选择一个数学符号来表示它们之间的关系,你会选择哪个符号呢?说说你的想法,用红笔填写等于号。
师:说的很好,请同学们观察这组分数和小数,十分之一米等于0.1米,百分之一等于0.01,千分之一等于0.001,你发现了什么?
生1:我发现分数和小数的关系非常的密切,可以把分数写成小数。
生2:我发现,分母是10的分数可以写成一位小数。
师:同学们的发现可真不少,那说了这么多,请同学们思考一位小数就是表示什么呢?师:看来一位小数就是表示分母是10的分数。
设计意图:通过让生观察米尺,找出不同的几分米,让孩子在实践中体会到十分之几和一位小数的关系。
2、认识两位小数
师:我们已经知道了一位小数表示十分之几,那么请同学们猜一猜两位小数与什么样的分数有关系呢?
师:好的,我们一起来验证大家的猜想。请在米尺上面找出1厘米,
找到了吗?师:这1厘米的长度是1米的几分之几?用分数怎么表示呢?板书分数,小数可以表示为0.01
师:请同学们想一想,3厘米呢?是几分之几米?可以观察手中的米尺进行思考!谁来说,来你,这个孩子,说说你的想法?小数可以写为?说说你的想法孩子,说的不错!
6厘米呢?孩子!用米做单位是百分之几米?怎样用小数表示?
师:这组分数的共同特点是怎样的?这些小数又有什么共同点吗?
生汇报,师板书百分之一等于0.01,百分之三等于0.03,百分之六等于0.06.师:来,看这里,同学们有什么发现?生1:分母是100的分数可以写成两位小数。生2:可以说两位小数表示百分知几。
设计意图:学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥了学生的积极主动性,使学生知道分母是一百的分数可以写成两位小数。
3、认识三位小数
同学说的非常好,如果我们把这把米尺平均分成1000份,每一份是多少呢?从0到1表示1毫米,那它是几分之一米呢?(课件出示米尺放大图)写成小数呢?板书(一千分之一米,0.001米)
师:孩子,那这样的12份呢?师板书。123份呢?师板书。
师:指板书,从这里你们又发现了什么?
生1:我发现分母是1000的分数可以写成三位小数。
生2:三位小数表示千分之几。
师:说的非常好,指板书一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:请同学们想一想四位小数表示什么?五位小数呢?
生:四位小数表示万分之几,五位小数表示十万分之几。
师:同学们都很聪明,请看这里回忆我们的探讨过程,和小组内的同学交流一下,你都发现了什么?
生1,:我认为分母是10,100,1000等的分数可以用小数来表示。生2:我们知道,十分之几可以写成一位小数,百分之几可以写成两位小数。生3:还可以说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。
师:同学们总结的真好!我们知道了分母是10,100,1000,的分数可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几......
设计意图:让学生经历只是的形成过程,有意识的促进迁移,让学生体验成功,培养学生的学习兴趣和信心。
如果我们还想在这把米尺上面找到更精确的数值怎么办呢?有同学知道吗?更小的单位还有微米,纳米,也就是说继续把1米平均分成多少份?随着我们队测量精确度的要求越来越高,你会发现这个长度单位可以越分越小,最后小的肉眼都看不到,数学就是这么神奇!
4、学习小数单位
孩子,请看这些分数,十分之一,十分之六和十分之八,这些分数都是有几个十分之一组成的?如果把这些分数用小数表示的话,我们可以这样思考0.1,0.6,0.8这些小数都是有几个0.1组成的呢?由此看来这些一位小数的计数单位就是十分之一,也可以用0.1表示;
那么两位小数的计数单位是多少呢?请思考!
师:说的很对,这些两位小数都是由几个0.01组成的,所以它们的计数单位就是百分之一,也可以用0.01来表示。
师:继续思考三位小数的计数单位是多少?嗯,很对!三位小数的计数单位就是千分之一,也可以用0.001来表示。
师:孩子们请看屏幕,我们会有更好的理解。师:我们刚才学习的一位小数,它是把1米平均分成10份,表示这样的1份或者几份,其中的1份就是它的计数单位,可以用十分之一表示,也可以用0.1表示,
师:那谁能说说两位小数呢?师:说的很好,三位小数,谁来说。
5、学习单位进率
以前我们学过整数的计数单位每相邻两个计数单位之间的进率是多少呢?有谁知道?
那相邻的两个小数计数单位之间的进率是多少呢?还会是10吗?生:是。师:说说你的理由!师:嗯!好,非常好,我们现在就来解决这个问题。孩子请思考1分米等于多少厘米?嗯,好的!1分米等于10厘米,相当于0.1米等于10个0.01米,所以我们可以说0.1和0.01这两个相邻计数单位的进率是10,师:谁来说说0.01和0.001这两个相邻计数单位之间的进率呢?1厘米等于10毫米,相当于0.01等于10个0.001,由此得出0.01和0.001之间的进率也是10.师:那三位小数呢?师:看来小数和整数一样,相邻的两个计数单位之间的进率是10.
三:巩固练习
学习了这么多关于小数的知识,老师想知道大家掌握的怎么样了,我们一起来做几道小练习,试一试。
1、把下面各图中涂色的部分用分数和小数表示出来。让生分别写出分数和小数。
2、做一做,填空。
0.3里面有()个0.1
0.09里面有()个0.01。
0.35里面有()个0.01.
0.006里面有()个0.001。
0.136里面有()个0.001.
4个()是0.004.
3、练一练
四、课堂总结
同学们,马上要下课了,能跟我谈谈你们的体会和收获吗?
同学们,关于小数的知识还有很多很多,有机会我们在一起探讨好吗?整理好学习用品,下课!
四年级下册教案数学人教版43
教学目标
1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维的水平。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:
用观察、猜想、验证的方法探索加法交换律和结合律,能正确地用字母来表示。
教学难点:
用语言表述加法结合律和加法交换律。教学准备:多媒体课件
教学过程
一、创设情境,引入新课
小游戏:我举左手,同学们左右换位置;我举右手,前后换位置。都准备好了吗?
想一想:在交换位置的过程中,什么发生了变化?什么没变?
引导学生回答:位置发生了变化,班级总人数没变。
像这样的例子在我们的生活中还有很多,其实这里面还隐藏着数学知识,学完这节课相信你就会知道了。
二、探究加法运算律
(一)探究加法交换律
1、多媒体出示
例:李叔叔今天上午骑了40KM,下午骑了56KM,一共骑了多少KM?
学生读题列算式并观察思考。
小结:
(1)每组算式中都有两个加数,而且两个加数相同,只是交换了位置。
(2)每组算式中两个加数的和相等。
得出:两个数相加,交换了位置,和不变。
2、验证猜想,体会方法。
(1)同桌两人合作,选好两个数,比如一人算6+8,另一人算8+6,比比结果,如果相同就可以写出一个等式,坐在左边的同学负责记下这个等式。
一些特殊的数(如0、1)等等呢?是不是也存在这个规律呢?
(2)学生汇报,教师板书。
教师小结:照这样下去,能写完吗?加省略号。这些例子都在说明“交换两个加数的位置,和不变”是正确的。
(3)那你能不能举出“交换两个加数的位置和不相等”的情况呢?
4、结论
如果请用自己喜欢的方式把你的发现表示出来会吗?
集体交流(展示各种表示方法,交流想法)
小结:两个数相加,交换加数的位置,它们的和不变,这就是我们得出的结论(板书:结论)--加法交换律,通常我们用字母表示为:a+b=b+a。a、b在这里表示两个加数。(板书:加法交换律及字母公式)
5、反思
在这一规律中,变化的什么?(两个加数的位置)不变的是什么?(两个加数的和)
6、总结:
刚才我们从几个具体例子的观察中发现了规律,随后又通过举例进行了验证,最后得出了结论,这是我们学习数学常用的方法。
下面我们继续用这种方法来探究加法运算中其它的规律。
(二)探究加法结合律
1、出示情境图,提出问题
根据提供的信息你会求“这三天一共骑了多少千米吗?”
(生交流不同的算法并口算出结果)
板书算式并计算出结果
因为这两个算式的结果相等,所以我们也可以写成这样的等式。
板书:88+104+96=88+(104+96)
2、算一算○里能填上等号吗?
(45+25)+13 ○45+(25+13)
(36+18)+22 ○36+(18+22)
学生分组计算并交流
3、观察比较,初步感知
仔细观察每组左右两边的算式,它们有什么相同点?又有什么不同点?
小结:
(1)每组左右两个算式中的加数是相同的,并且加数的位置也是相同的;
(2)每组左右两边加数的和是相同的;
(3)小括号添加的位置不同,也就是运算顺序不同。
4、引导验证
你会照样子再写两个这样的等式吗?
学生交流,教师板书
5、结论
你会用符号把你的发现表示出来吗?
集体交流(展示各种表示方法,交流想法)
小结:三个数连加,我们可以先把前两个数相加,再把它和第三个数相加,或者也可以先把后两个数相加,再和第一数相加,和不变。这就是加法结合律。
用字母表示为:(a+b)+c=a+(b+c)(板书:加法结合律及字母公式)
a、b、c在这里可以代表什么数?(a+b)+c表示什么?a+(b+c)表示什么?
6、反思
在这一规律中变化的是什么?(运算顺序)不变的是什么?(加数的位置与和)
(三)、比较两个运算律
刚才我们一起研究了加法中的'两个运算规律,加法交换律和加法结合律,这是我们运算律(出示课题:运算律)大家族中的两个部分,比较一下这两个运算规律,它们有什么区别?
小结:加法交换律变化的是加数的位置,而加法结合律在不改变加数位置的前提下变化的是运算的顺序。
三、巩固练习
1、下面的等式各应用了什么运算律?
(1)47+(30+8)=(47+30)+8
(2)82+0=0+82
(3)(84+68)+32=84+(68+32)
(4)75+(48+25)=(75+25)+48
小结:像第(2)个等式那样,左右加数的位置发生了变化,那就说明它运用了加法的交换律;像第(1)、(3)个等式那样,左右加数的位置没有发生变化,只是改变了运算顺序,那就说明它们运用了加法的结合律;如果像第(4)个等式那样左右加数的位置发生了变化,运算顺序也发生了变化,那就说明它同时运用了加法的交换律和结合律。
2、下面的题也运用了加法运算律,说说分别运用了什么运算律?
(1)876验算:150
+ 150 + 876
运用了加法()律
(2)用“凑十法”计算:7+9=(6+1)+9=6+(1+9)
运用了加法()律
(3)6+7+4=7+(6+4)=17
运用了加法()律
小结:合理运用加法运算律,可以使我们的计算既正确又简便。
3、在□里填上合适的数,并说说这样填的理由。
(1)96+35=35+□
(2)204+57=□+204
(3)(45+36)+64=45+(□+□)
(4)560+(140+70)=(560+□)+□
小结:看来同学们已经明确了加法交换律和加法结合律的特征了。
4、练习
第一组:先算一算,再比一比
38+76+24 38+(76+ 24)
学生比较两道题目的异同
哪一题计算起来简便些?为什么?
小结:对啊,当算式中两个加数能凑成整百或整千数时我们通常可以使用加法运算律使计算简便。
第二组:比比谁算得快
(88+45)+12 45+(88+ 12)
你怎么算得这么快,说说你的奥秘好吗?(学生交流)
小结:看来在计算中灵活地运用这些运算律可以使计算比较简便。
四、总结拓展
今天我们一起学习了加法运算中的两个运算,加法交换律和加法结合律,通过学习,愿意把你的收获与大家分享一下吗?
四年级下册教案数学人教版44
教学目标:
1.理解并掌握加法交换律和加法结合律,初步学习用加法运算定律进行简便计算。
2.经历探索加法交换律和结合律的过程,通过猜想验证,比较和分析,发现并概括出运算定律。
3.在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
4.渗透符号化数学思想方法。
教学重点:
理解并掌握加法交换律和加法结合律。
教学难点:
用观察、猜想、验证的方法探索加法运算律,发现并归纳出加法交换律和结合律。
教具准备:多媒体课件
教学流程:
一、创设情境,导入新课。
1.同学们,喜欢听故事吗?老师给大家带来了一个猴妈妈和猴宝宝的故事。
(一只猴妈妈给一只猴宝宝分桃子,上午给他3个,下午给他4个。猴宝宝说:“妈妈,上午再多一点,好吗?”猴妈妈说:“好,上午给你4个,下午给你3个。”)听完故事,你想说些什么?
2.结合学生发言,教师板书:3+4=4+3。 观察这一等式,你有什么发现?
生1:交换两个加数的位置和不变。
生2:交换3和4的位置和不变。
3.比较这两个结论,你想说些什么?
生:交换3和4的位置和不变。给出的结论只代表了一个特例,交换两个加数的位置和不变。给出的结论能代表许多情况。
师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想,既然是猜想,那么我们还得--验证。
二、猜想验证,探索规律。
1.验证猜想,怎么验证呢?
生:我觉得可以再举一些这样的例子?比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。
2.那你们觉得需要举多少个这样的例子呢?
生1:三个以上。
生2:至少要十个以上。
3.师:我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?
学生在练习纸上举例,教师巡视。
4.师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。
(教师展示如下两种情况:1.先写出12+23和23+12,计算后,再在两个算式之间添上“=”。2.不计算,直接从左往右依次写下“12+23=23+12”。)
5.师:比较两种举例的情况,想说些什么?
生1:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。
生2:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。
6.师:哪些同学是这样举例的,能举手示意一下吗?
为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的.算式,左右两边是不是真的相等。
7.师:其余同学,你们举了哪些例子,又有怎样的发现?
生1:我举了三个例子,7+8=8+7,2+9=9+2,4+7=7+4。从这些例子来看,交换两个加数的位置和不变。
生2:我也举了三个例子,5+4=4+5,30+15=15+30,200+500=500+200。我也觉得,交换两个加数的位置和不变。
师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?
8.师:下面这位同学的举例,又给了你哪些新的启迪?
(课件):0+8=8+0,6+21=21+6,1/9+4/9=4/9+1/9。
生:我们在举例时,都没考虑到0的问题,但他考虑到了。
生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。
9.师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?
10.师:回顾刚才的学习,除了得到这一结论外,你还有什么其它收获?
11.给这一规律起什么名称呢?
加法交换律,师板书
12.师:在这一规律中,变化的是两个加数的――(板书:变)但不变的是――
13.如果用字母a、b分别表示这两个数,怎样表示这个定律。(板书)
14.用其他的图形或字母还可以怎样表示?
15.学习例题1,指名读题,读懂什么了?独立完成列式,指名说说为什么这样列式?
16.这两个算式都表示什么?40+56=96(km)50+46=96(km)
17. 板书40+56=56+40
18.出示例题2,你能解决这个问题吗?学生独立完成。
19.板书88+104+96=88+(104+96)
20.学生举例验证,三个数相加,先加前两个和先加后两个,和不变。
21.得出加法结合律结论。
22.用字母表示。板书
三、巩固练习,深化理解。
1. 应用加法交换律,用线连一连。
2.根据运算定律填空。
3.下面的算式分别运用了什么运算定律。
4.怎样简便就怎样算。
四、回顾全课,总结收获。
学习了本节课,你有什么收获?
四年级下册教案数学人教版45
教材内容:
人教版四年级下册第61页
教学目标:
1、知道小数点位置移动引起小数大小变化的规律;能依据这一变化规律,比较熟练地判断随着小数点位置的变化,引起这个小数的大小有什么变化。
2、经历小数点移动引起小数大小变化规律的发现过程,体会观察比较、归纳的'学习方法。
3、感受数学知识中的逻辑之美,激发学生热爱数学、学习数学的情感。
重点难点:
掌握小数点位置移动引起小数大小的变化的规律
教法学法:
1、教法:情境激趣,引导探究。
2、学法:小组合作,自主探究。
教学准备:
课件
教学过程:
一、生成问题 激兴导入
1、学生根据课题提出问题。
师:知道这节课我们要研究哪部分内容吗?
师:你看了这个题目,大家有什么问题要问吗?
(根据学生回答板书:向哪移?变化?)
师:带着问题学习会让我们的学习过程更清晰,学习目的更明确。相信同学们通过这节课的学习,能解决心中疑惑。
(设计意图:学贵有疑,利用小学生对于新知识的好奇心,引导学生自主发问。这些问题来自于学生本身的思考,也就是他们急于探究新知的动力,有利于调动学生积极参与到学习和探索中去。)
2、出示孙悟空打小妖的情境动画,将情境中的数据列出,感知小数点位置的变化及小数大小变化。
师:课前老师通过和同学们交流知道同学们都爱看西游记,这天师徒四人正行走在西去取经的路上,突然杀出一个妖怪,想不想看当时是什么情况?(放动画片)
(设计意图:孩子好动,喜欢动画,这一环节设计能有效地把学生的精神集中起来,并通过动画,让学生初步感知小数点位置的移动会引起小数大小的变化,为探索有什么变化规律作好准备,在心理上产生强烈的我要探索的冲动。)
二、探索交流 解决问题
从情境中提取数据让学生填空
0.009米=(9)毫米 ①
0.09米=(90)毫米 ②
0.9米=(900)毫米 ③
四年级下册教案数学人教版46
课题:小数的大小比较
教学内容:教科书40页例5.做一做。
教学目标
1.学生熟练掌握比较小数大小的方法和步骤,并能根据要求排列几个数的大小。
2.通过对小数大小的比较,加深学生对小数意义的理解。
3.在学习过程中,培养学生观察、比较和概括的能力。
教学重点:小数大小的比较方法和步骤。
教学难点:小数位数不同时比较大小容易与整数比较大小的方法混淆。
教学设计:
一、复习引入:
832○799 6124○6214 1003○999
说说怎样比较整数的大小?
师:我们已经掌握了整数比较大小的方法,那么小数比较大小的方法也是从高位比起,一位一位地比较。今天就来研究小数比较大小的方法。(板书课题:小数大小的比较)
二、学习新课
1、出示例5:姓 名 成绩/m
小 明 3.05
小 红 2.84
小 莉 2.88
小 军 2.93
问:你能给他们排出名次吗?
明确:先比较整数部分
3>2,所以3.05是最大的'。
整数部分相同,再比较小数部分:2.84、2.88、2.93整数部分都相同,则比较小数部分十分位,9>8,所以2.93>2.8()
十分位相同,再比较百分位,8>4,所以2.88>2.84
最后比较结果:3.05>2.93>2.88>2.84
2、根据刚才的比较,你可以得出什么结论?
引导学生概括:比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;当整数部分相同时,看十分位,十分位上的数大的那个数就大;整数部分和十分位上的数都相同,要看百分位上的数,百分位上数大的那个数就大。
3、练习:P41做一做
三、巩固练习:练习十
四、课堂总结
今天有什么收获?
五、作业
练习十6、7题。
板书设计
小数的大小比较
比较小数的大小,先看整数部分,整数部分大的小数就大。如果整数部分相同,就比较十分位,十分位上大的小数就大。十分位相同就看百分位,直到比较出大小为止。
四年级下册教案数学人教版47
教学内容:人教版小学四年级数学下册第9页(例4)内容。
教学目标:
1、 通过学习, 在解决问题和相互交流的过程中,使学生理解带中括号的四则混合运算的运算顺序,并能熟练习的进行运算。
2、 经历与他人交流各自算法的过程,加强小组合作。培养学生良好的学习习惯。
3、灵活运用所学计算方法解决问题,感受数学与生活的密切联系,增强应用数学意识。
教学重点:理解带中括号的四则混合运算的运算顺序 。
教学难点:掌握带中括号的四则混合运算的运算顺序 。
教具学具:课件
教学设计:
一、 复习导入。
1、师:我们目前学过哪几种运算?(加法、减法、乘法、除法)
师:我们学过的加、减、乘、除四种运算统称四则运算。(板书:四则运算)
2、这节课我们先来复习一下学过的四则运算的.相关知识。
(课件出示) 口算:
40+40÷8 = 45 32×4 =128 180÷9+7 =27
11×5?60÷2 =25 5×6×7 =210 125÷25×4 =20
(课件出示) 计算:
72 ? 28+32 810÷3×5 37+42×5
(学生在练习本上独立计算后汇报,师板书计算过程)
问:通过上面的计算我们发现:在没有括号的算式里,运算顺序是怎样的?(只有加、减法或只有乘、除法,按照从左到右的顺序计算;既有乘、除法,又有加、减法,要先算乘、除法,后算加、减法。)
3、师:通过前面的学习,我们已经知道了四则混合运算的顺序。下面我们来总结并继续学习有括号的混合运算的顺序。(板书:括号)
二、新知探究。
1、(课件出示)96÷12+4×2
(1)谁来说一说这道题的计算顺序。(学生汇报:先算除法和乘法,再算加法)
师:按照你们的想法,自己算一算。(生在练习本上计算)
(2)你是怎样计算的?(生汇报,师板书计算过程)
2、上面的算式用到了混合运算的顺序,那么如果将这个题目加上一个小括号,你们想怎样加?(生汇报想法)
(课件出示)96÷(12+4)×2
(1)师:这道题的运算顺序是怎样的呢?(生汇报:先算小括号里面的加法,再算除法,最后算乘法。)
师:动笔算一算。(生在练习本上计算)
(2)你是怎样计算的?(生汇报,师板书计算过程)
(3)师生共同小结:如果有小括号的混合运算,应该按怎样的顺序计算呢?(生汇报师板书:在一道算式里,如果有小括号,应该先算小括号里面的算式,再 小括号外面的算式。)
3、(师板书:【 】)问:同学们认识这个括号吗?(认识,是中括号)
如果让你们在上面的算式里再加上一个中括号,你们打算怎样加?(生汇报想法)
(课件出示)96÷[(12+4)×2]
(1)师:这道算式里,既有小括号又有中括号,你们知道按怎样的顺序计算吗?请在小组内互相说一说自己的想法。(小组交流)
(2)谁来说一说这道题按什么顺序计算?(生汇报:先算小括号里面的加法,再算中括号里面的乘法,最后算中括号外面的除法。)
师:动笔试一试。(生在练习本上计算)
(2)你是怎样计算的?(生汇报,师板书计算过程)
(3)师生共同小结: 一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。(板书)
4、今天我们学习的内容在第9页,请同学们翻开书认真读一读例4的内容,把你认为重要的内容画下来。
师:你画了什么内容,给大家读一读。(指名读)
师:对于今天学习的内容,你还有什么疑问吗?(没有)好,下面我们就运用所学的四则混合运算的知识来解决数学问题。
三、巩固练习
1、做一做
先说一说下面各题的运算顺序,再计算。
360÷(70-4×16) 158-[(27+54)÷9]
2、填一填
(1)在有括号的算式里,要先算( )括号里面的,再算( )括号里面的。
(2)计算(168-144)÷12×8时,要先算( )法,再算( )法,最后算( )法。
(3)计算32×[(6+24)÷3]时,要先算( )法,再算( )法,最后算( )法。
3、辨一辨
(1)30+60÷60-30 与(30+60)÷( 60 -30 ),的运算顺序和结果都是一样的。 ( )
(2)645-189×2 的计算结果是912。 ( )
(3)4000与20的商减去15与24的和正确列式是4000÷20-( 15+274 )。 ( )
4、按照顺序计算,并填写下面的,然后列出综合算式。
5、你知道吗?
四、课堂总结
师:本节课你有哪些收获?
四年级下册教案数学人教版48
教学目标
1、知识与技能:①结合具体的情境,引导学生认识和理解加法交换律和结合律的含义。
2、过程与方法:能用字母式子表示加法交换律和结合律,初步学会应用加法交换律和结合律进行一些简便运算。
3、情感态度与价值观:
①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的'积极情感。
②培养学生观察,比较,抽象,概括的初步思维能力。
教学重点:认识和理解加法交换律和结合律的含义。
教学难点:引导学生抽象概括加法交换律和加法结合律。
教学过程:
一、创设情境,导入新课
李叔叔今天一共骑了多少千米?
问题:
1、你能列式计算吗?40+56=96或56+40=96
2、为什么用加法计算?
二、在情境中初步感知加法交换律
(一)尝试解决问题
问题:
1、 40+56和56+40这两种列式都对吗?
2、这两个算式相等吗?
(二)枚举中验证规律
问题:你还能举出像这样的等式吗?
(学生举例,老师写在黑板上,大约四组。)
(三)在比较中概括规律
问题:
1、像这样的算式你写的完么?
2、这些算式有什么共同的特点?
两个数相加,交换加数的位置,和不变。这叫做加法交换律。
3、你能用自己喜欢的方式表示加法交换律吗?(展示大家的表示方法,让学生自己进行比较。)
三、在情境中初步感知加法结合律
(一)尝试解决问
问题:你能解决李叔叔提出的问题吗?
方法一:
88+104+96=192+96=288
方法二:
88+(104+96)=88+200=288
(二)迁移学习经验,概括规律
问题:
1、你还能举出像这样的等式吗?(学生举例,老师写在黑板上,大约四组。)
2、整体观察,为什么这些算式都相等?(都是相同的三个数求和。)
3、这些算式有什么共同的特点?(三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这叫做加法结合律。)
4、你能用自己喜欢的方式表示加法结合律吗?(展示大家的表示方法,让学生自己进行比较。)
四、巩固练习,提升认识
1、应用加法交换律,用线连一连。
2、根据加法交换律填空。
3、根据加法结合律填空。
4、先计算,再填表。
五、布置作业
作业:第19页练习五,第2题。
四年级下册教案数学人教版49
学习目标:
1、通过整理复习进一步理解运算定律,牢记所有定律。
2、通过复习,发现运用知识解决问题中的难点问题,及时纠正错误。
3、通过复习,进一步提高分析、判断与计算能力;建立知识之间的联系和区别,能根据具体情境选择正确的方法进行简算。
学习重难点:
重点:理解运算定律,能正确运用运算定律进行计算
难点:能根据算式的特点,灵活选择适合的运算定律进行计算。
实物准备:
多媒体课件、答题卡。
学习流程:
一、导入
同学们,我们已经学习了加法、乘法、减法、除法的运算定律,运用这些运算定律能使我们的计算更简便,今天我们就来整理复习第三单元《运算定律》
二、导学
活动一:回忆定律
活动任务:回忆、整理第三单元学过的运算定律,用含有字母的算式表示出来。
活动流程:
1、明确任务:认真默读活动任务,理解活动要求。
2、自主学习:独立回忆整理第三单元学习的`运算定律。(5分钟)
3、小组讨论:小组交流运算定律,推选出发言人准备交流。(2分钟)
4、展示分享:随机抽一个小组展示交流,其他小组补充,质疑。
5、梳理提升:教师引导梳理,对比加法、乘法交换律、结合律。再次记忆运算定律。
活动要求:
1、 自主学习可以参考课本复习整理
2、小组讨论轮流发言,补充式发言。
活动二:运用定律
活动任务:用运学过的算定律完成下列练习:
①23+56+77
②462-83-17
③3200÷25÷4
④8×30×125
⑤17×147-17×47
⑥36×47+47×64
⑦99×53+53
⑧101×97-9
活动流程:
1、明确任务:投影出示练习题,认真读题思考。
2、自主学习:独立学习卡二相关练习(分组完成4题即可)。
3、小组讨论:小组长组织订正学习卡二,统计易错练习,分析错误原因,改正错误。
4、展示分享:随机抽取一个同学学习卡展示解题过程其他小组评价、订正。
5、梳理提升:根据解题情况重点分析易错练习解题思路。
三、导练
活动三:强化训练
活动任务:请你完成下面的练习
①99×18
②101×45
③25×28
活动流程:
1、明确任务:认真读题,思考解题方法。
2、自主学习:独立完成简算练习。(只用写出解题思路即可,不用算出答案)
3、小组讨论:小组长组织交流,选出最佳解题方法。
4、展示分享:一个小组展示解题过程并说明解题思路。其他同学补充、质疑。
5、梳理提升:教师梳理运用运算定律的注意事项
四、导结:这节课你印象最深的是哪个知识点?
四年级下册教案数学人教版50
教学目标:
1、掌握多位数的大小比较方法,能正确比较多位数的大小。
2、掌握整万数和整亿数改写成用“万”或“亿”作单位的方法,能正确地进行改写。
3、培养学生知识迁移的能力,渗透优化的数学思想。
教学重点:掌握多位数的大小比较方法和改写的方法。
教学难点:灵活运用知识解决数学问题。
教学准备:课件
教学过程:
一、谈话引入
1、课件出示下列两个数:
4000004000000
(1)提问:你能读出这两个数吗?分别让学生读一读。
(2)解决问题:十万位上的“4”表示什么?百万位上的“4”又表示什么?
师:为什么同样的数字“4”,在不同的数位上所表示的大小是不一样的?
启发学生思考,并明确:不同数位上的数表示不同的意义。
(3)比一比,这两个数哪个大哪个小?指名回答。
2、在○里填上“>”“<”或“=”。
988○1000765○489566○581
反馈时让学生说说比较万以内数的大小的方法。
3、导入:刚才,我们对于万以内数的大小的比较方法进行了回顾,下面我们来看一看,这种方法对万以上的多位数是否也适用?这就是这节课要学习的内容。(板书课题)
二、交流共享
1、课件出示教材第20页例题5。
让学生观察表格,说一说,这三年出版社图书的种类各是多少?
指名读一读,得出信息。
2、独立思考,完成排序。
提问:这三年出版的图书数量各不相同,哪一年出版的种类多?哪一年出版的种类少?请同学们按从大到小的顺序排列。
学生独立思考后进行比较和排序。教师巡视,进行个别指导。
3、小组交流。
师:请同学们把自己比较的方法在小组内进行交流,看看小组内同学之间有没有不同的比较方法,谁的方法更加简便。
学生在小组内进行交流。教师巡视,参与个别小组交流,了解学生的交流情况。
4、组织全班交流汇报。
学生可能会有以下两种比较方法,如果没有,教师可以进行必要引导。
方法一:370000>300000>250000
提问:你是怎么想的?
引导学生得出:先看三个数的位数是否相同,三个数都是六位数;再比较位,位大的数就大。
追问:如果位相同,又该怎么比呢?
生答:就比较第二位,第二位大的数就大……
方法二:250000=25万,300000=30万,370000=37万,37>30>25,37万>30万>25万
5、数的改写。
(1)引导学生关注数的改写过程。
提问:第二种方法可行吗?在比较这三个数的大小时,要先做什么?(将三个数改写成用“万”作单位的数)
追问:什么样的数可以改写成用“万”作单位的数呢?
(2)教师引导学生观察两种比较方法,提问:两种比较的`方法相同吗?哪一种方法更简便?
引导学生通过观察思考,领悟到:将这三个数先改写成用“万”作单位后再比较更简便。
(3)小组讨论:怎样将一个整万或整亿的数改写成用“万”或“亿”作单位?
组织交流汇报:把一个整万的数改写成用“万”作单位的数,只要把这个数末尾的4个0去掉,在后面加上一个“万”字;把一个整亿的数改写成用“亿”作单位的数,只要把这个数末尾的8个0去掉,在后面加上一个“亿”字。
(4)即时练习。
课件出示题目:你能先把这三年各类图书的总印数改写成用“亿”作单位的数,再把它们按从大到小的顺序排列吗?
6300000000=()亿
7000000000=()亿
7700000000=()亿
()亿>()亿>()亿
(5)小结:在日常生活中,为了方便,常常把整万或整亿的数改写成用“万”或“亿”作单位的数。
三、反馈完善
1、完成教材第21页“练一练”第1题。
先组织学生对这几个数进行分级,再读一读,最后再在教材上进行改写。
2、完成教材第21页“练一练”第2题。
先比较大小,再说说大小比较的方法。
3、完成教材第23页“练习四”第1~4题。
学生独立完成后,组织讲评、订正。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
【四年级下册教案数学】相关文章:
四年级下册教案数学通用03-07
小学数学四年级下册教案06-28
苏教版四年级数学下册教案03-25
数学下册《剪一剪》教案11-06
人教版四年级下册数学教案11-23
人教版四年级下册数学复习教案08-27
四年级数学下册全册的教案03-25
四年级下册数学《简易方程》教案03-25
《数学广角之植树问题》四年级下册数学教案03-25