- 相关推荐
相似三角形的性质教学方案(通用11篇)
为保证事情或工作高起点、高质量、高水平开展,通常会被要求事先制定方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。那么你有了解过方案吗?以下是小编收集整理的相似三角形的性质教学方案(通用11篇),欢迎阅读与收藏。
相似三角形的性质教学方案 1
(第1课时)
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的`思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论→∽(欠缺条件)→∽(已知)∽ ,BM=MC,
以上两种情况的证明可由学生完成.
[小结]
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
七、布置作业
教材P241中3、教材P247中A组3.
八、板书设计
相似三角形的性质教学方案 2
一、教学目的
使学生熟练地掌握等腰三角形的性质.
二、教学重点、难点
重点:等腰三角形性质的应用.
难点:添加合适的辅助线.
三、教学过程
复习提问
1 .等腰三角形的性质.
2.等腰三角形的底角一定是_角?
3.等腰三角形的底角为20°,求它的顶角度数.
引入新课
等腰三角形一腰上的中线把它的周长分为15cm和6cm的'两部分,求这三角形各边的长.
学生可能利用算术的方法,计算出腰长为10底边长为1.也可能算不出来,这里教师可作如下引导:
在图1中,AB=AC,D为AB的中点(即AD=DB),设 AD=xcm,则 AB=AC=2cm(中线定义).由AC+AD=15cm,得
2x+x=15.
解得 x=5,……
本题是利用列方程的方法解得的,此法对于某些几何计算题来说,简捷而有效.
新课
例2 已知:图2,在△ABC中,AB=AC,点D在AC上,且 BD=BC=AD.求△ABC各角的度数.
分析:欲求三角形各角度数.只需求出∠A度数,把∠A度数作为一个未知数x,则∠A=∠1=x°,∠2=∠A+∠1=2x°,∠ABC=∠C=∠2=2x°.应用三角形内角和定理于△ABC,求出方程所对应的几何等式:∠A+∠ABC+∠C=180°,即可得出关于x的方程.
例3 已知:如图3,点D、E在△ABC的边BC上,AB=AC,AD=AE.求证:BD=CE.
通过分析使学生发现,要作AF⊥BC即底边上的高这条辅助线(这是证明的关键所在),并告诉学生这是等腰三角形中一种常见的辅助线.利用这条辅助线就很容易证得结论.并说明,这是利用等腰三角形的“三线合一”性质来证明的题目.
小结
1.列方程解几何计算题是几何计算题的一种重要解法,在这种解法中,寻求几何等式(如例2中∠A+∠ABC+∠C=180°)是基础,把几何等式的各项转化为未知数x的代数式是关键(如∠A=x°,∠ABC=∠C=2x°).
2.对于等腰三角形的”三线合一”性要灵活运用.
练习:略
作业:略
思考题:例3中辅助线改为△ABC的顶角平分线AF,写出证明过程.
四、教学注意问题
1.等腰三角形性质的灵活、综合应用,防止依赖于全等三角形证明线段或角相等的思维定势.
2.要防止“三线合一”性在应用中出现的错误.
相似三角形的性质教学方案 3
一、教学目标
(一)、知识目标
1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(二)、能力目标
1、培养学生“转化”的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论”的思想。
2、培养学生进行独立思考,提高独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探究在现实生活中与数学有关的实际问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点
1、教学重点:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具
三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程
课的导入:
(一)、三角形按边怎样分类?
(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形)
(二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.
(三)、一般三角形有那些性质?
(两边之和大于第三边.三个内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。新课讲解
(一)、动手实验,发现结论
请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两个底角还有什么关系?
(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧保持相等关系。
(三)、证明结论,得出性质
1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。(2)引导学生寻找辅助线、如何添加辅助线。(3)电脑显示证明过程。
(4)阐明“等边对等角”的作用。
2、推论1的证明。(1)进一步启发学生得到“等腰三角形三线合一”的'性质。
(2)阐明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。(电脑演示)一般三角形不具备这条性质。(四)、巩固练习,加深理解
练习一:
1.△abc中,ab=ac.
(1)若∠b=50°,则∠c=______,∠a=________.(2)若∠a=100°,则∠b=______,∠c=________.2.(1)等腰三角形的一个内角为50°,则另两个角为_____________________.(2)等腰三角形的一个内角为100°,则另两个角为_____________________.(3)等腰三角形的一个内角为90°,则另两个角为_____________________.[归纳]已知等腰三角形的一个内角的度数,求其它两角时,(a)若已知角为钝角或直角,则它一定是顶角;
(b)若已知角为锐角,它可能是顶角,也可能是底角.(五)、运用性质,得出推论
提问:上面定理的证明得出两个三角形全等后,还可以证明那些对应元素相等呢?
对应边:bd=cd---------------ad是bc边上的中线
对应角: ∠bda=∠cda,又∠bda+∠cda=180°
从而∠bda=∠cda=90°-----------------ad是bc边上的高
(学生探讨回答,并归纳得出推论1)
推论1:等腰三角形顶角的平分线平分底边,并且垂直于底边.推论1用几何语言表示:
在△abc中,(1)∵ab=ac,ad⊥bc,∴∠______=∠_____,______=______;
(2)∵ab=ac,ad是中线,∴∠_____=∠______,_____⊥____;
(3)∵ab=ac,ad是角平分线,∴_____⊥_____,______=______。
提问:一般三角形是否具有这一性质呢?(几何画板演示)
提问:等边三角形的各角之间有什么关系?各角为多少度?(学生回答,并归纳得出推论2)
推论2:等边三角形的三个角都相等,并且每个角都等于60°。
(六)、深入实际,举例应用
例题:已知:如图,房屋的顶角∠bac=100°,过屋顶a的立柱ad⊥bc,屋檐ab=ac,求顶架上∠b、∠c、∠bad、∠cad的度数.首先用多媒体给出学生熟悉的人字梁屋架,然后分别介绍顶架上房屋的屋椽(两条椽相等)、横梁、立柱(垂直于横梁),而后把顶架结构抽象成数学模型,寻找解题思路。
五、课堂小结:
1、等腰三角形的性质定理
2、推论1(“三线合一”)
3、等腰三角形中经常用到的辅助线
六、布置作业
课本73页第2,3,5,8题。
相似三角形的性质教学方案 4
教学目标
1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。
2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
教学重点:
认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
教学难点:
会在三角形内三条边上画高。
教学准备:
师生分别准备木条(或硬纸条)钉成的三角形。
教学过程
第一课时
一、引入新课
1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。
2.生活中哪些物体上也有三角形呢?让学生说一说。
房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……
3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。
4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)
二、新课学习
1.发现三角形的特征。
请你画出一个自己喜爱的三角形。三角形有几个顶点、几条边、几个角?
让学生在自己画的三角形上尝试标出边、角、顶点。
教师根据学生的汇报板书,标出三角形各部分的名称。
2.概括三角形的定义。
大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。请学生对照上面的说法,议一议:下面的图形是不是三角形?
讨论:对于“三角形”怎样说更准确?
阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”。
教师用准备好的三条线段的教具在黑板上摆放帮助理解关键词:
三条线段、围、相邻两个端点相连。
学生发现:只有具备了这三个条件才能准确无误地围成三角形。
3.认识三角形的底和高。
出示练习纸:三角形屋顶的房子和斜拉桥。
你能测量出三角形房顶和斜拉桥的高度吗?
学生在练习纸上操作。反馈:你是怎么测量的?
将三角形房顶下面的边做底,房顶做顶点,过顶点作底边上的垂线就是房顶的高。
师带领学生一起回顾作高的方法,首先强调底和高的概念:
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?
出示教材第81页上的三角形。这是三角形的一组底和高吗?画出其他的底和高,画后提问:三角形有共几条高?
出示直角三角形(一条直角边作底),你能画出这条底边上的高吗?
学生试画,画后发现高是另一条直角边。出示另两条底边,学生在答题纸上画出对应的高。
4.用字母表示三角形
全班这么多同学我们是用什么来区分,不会认错的?(名字)黑板上这么多的三角形怎样很快说出每个三角形呢?
我们一般用字母来表示。标注A、B、C在顶点,我们叫它三角形ABC。
如果标注D、E、F在顶点,就叫做三角形DEF。
5.三角形的稳定性
(1)提出问题。
出示教材第81页插图:生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?
(2)实验解疑。
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
三、巩固练习
指导学生完成练习十四1、2、3题。
四、课堂总结
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
第二课时
一、引入新课
1.出示:课本82页例3情境图。
三角形教案
(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?
(2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)
教师出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?
2.大家都认为走中间这条路最近,这是什么原因呢?
请大家看:连接小明家、商店、学校三地,近似一个什么图形?
连接小明家、邮局、学校三地,同样也近似一个什么图形?
大胆猜想:那走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?
操作交流:请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。
学生得出:的确有“两边的和大于第三边”这样的关系。
猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。我们来做个实验。
二、探究
1.实验l:用三根小棒摆一个三角形。
在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。
请不能摆成三角形的同学,说出不能摆成三角形的三根小棒的长度。
任意抽出三组,请学生试一下,看是否摆不成。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。学生汇报。
我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的.三条边又有什么关系?
(1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。
(2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?
大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。
(3)三角形任意两边的和大于第三边。
三、应用
1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。(学生说说)
2.请学生独立完成82页例题中三道题,说说能否拼成三角形。
我们是否要把三条线段中的每两条线段都相加后才能作出判断?
思考一下:有没有更快捷的方法?
(用较小的两条线段的和与第三条线段的关系来检验。)
做练习十四第四题,利用快捷方式判断。你能用下图中的三条线段组成三角形吗?有什么办法?
3.有两根长度分别为2cm和5cm的木棒。
(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?
(3)要能摆成三角形,第三边能用的木棒的长度范围是多少?
四、课堂总结
在这节课里,你有什么收获?学会了什么知识?是怎样学习的?
第三课时
一、引入新课
1.引导学生回顾锐角、直角和钝角的定义。
大于0小于90的角,叫做锐角;
等于90"的角,叫做直角;
大于90,小于180的角,叫做钝角。
2.让学生分别画出满足下列条件的三角形。
(1)画一个有一个角是锐角的三角形;
(2)画一个有二个角是锐角的三角形;
(3)画一个有三个角是锐角的三角形。
3.给学生足够的时间,教师可巡视班级,观察学生的学习情况。
4.一段时间后,让同桌的学生相互检查,验证所画的三角形是否满足要求。
5.肯定学生的积极表现,进一步指出:大家所画的三角形各不相同,由此我们可以知道三角形的种类很多,怎样对这些不同种类的三角形进行分类呢?本节课我们就来探讨这个问题。
二、新课学习
(一)从角的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生先从角的方面人手,让学生观察上述三个三角形各内角,可以让学生先目测三角形内角大小,然后用量角器测量三角形内角大小。提问:这些角分别属于锐角、直角、钝角中的哪一类?
3.组织学生进行分组讨论。讨论的主题是:如何对三角形进行分类。教师可参与到学生的讨论中,及时了解学生的想法和状态,教师可作适当提示。
4.一段时间后,请各组派代表发言,介绍本组的讨论-情况。学生可能想到将三角形所含锐角个数分成三类,也可能想到将三角形分成锐角三角形,直角三角形,钝角三角形。
5.师生共同分析讨论,指出按三角形所含锐角的个数分类是不合理的,因为只含一个锐角的三角形是不存在的。
6.教师指出按照如下的分类是合理的,多媒体展示:
文本框:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。
7.指出已有图中,哪个是锐角三角形,哪个是直角三角形,哪个是钝角三角形。让学生任意画一个三角形,总可以将它归为上述三类三角形中的一类。因此,一个三角形要么是锐角三角形,要么是直角三角形,要么是钝角三角形。
多媒体展示下图:
(二)从边的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生从边的方面考虑,可让学生自己或和同桌合作剪出如上的三角形纸片。
3.教师可巡视班级,监督学生的活动情况,随时给予学生指导。
4.请学生分别用直尺和量角器测出上述三个三角形的三条边的长度及各个角的度数。
5.学生发现其中一个三角形的三条边相等,三个角的度数都是60°。也有三角形有两条边相等,两个角相等;另一个三角形的三条边和三个角互不相等。
6.给出等腰三角形和等边三角形的定义。多媒体展示:
文本框:有两条边相等的三角形,叫做等腰三角形;三条边都相等的三角形,叫做等边三角形。
7.展示等腰三角形和等边三角形课件,讲解等腰三角形顶角、底角、腰和底的概念。
8.师生共同分析等腰三角形和等边三角形的性质。
性质l:等腰三角形的两腰相等,两底角相等。(板书)
性质2:等边三角形的三条边相等,三个角相等并且都是60°。(板书)
9.请学生列举生活中等边三角形和等腰三角形的例子,体会数学与现实的广泛联系。
三、课堂总结
引导学生回顾本节课的主要内容:三角形的分类。
从角的角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;
从边的角度,三角形可以分为一般三角形、等腰三角形、等边三角形。
第四课时
一、引入新课
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、新课学习
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)
11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°-(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2.88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
四、课堂总结
通过这节课的学习你有什么收获?
相似三角形的性质教学方案 5
一、教学内容
《三角形的特性》是人教版小学数学四年级下册第五单元中第一课时的内容。
二、教学目标
1、知识目标:理解三角形的定义,知道三角形各部分的名称,理解三角形稳定性的特征,并学会给三角形画高。
2、能力目标:培养学生的观察分析和动手操作能力以及对数学知识应用的能力,进一步发展空间观念。
3、情感目标:体验数学与生活的'联系,培养学生学习数学的兴趣。
三、教学重、难点
教学重点:理解三角形的定义,三角形稳定性的特征。
教学难点:掌握三角形高的画法。
四、教学过程
(一)导入。
1、课件出示一组情境图:同学们,我们以前学过三角形,仔细观察一下你能在图上找到三角形吗?
2、三角形在我们的生活中有着广泛的应用,这节课我们就来探究一下三角形的特性。(板书课题:三角形的特性)
(二)操作感知,理解概念。
1、发现三角形的特征。
(1)师生每人画出一个三角形。
小组内展示画的三角形,你发现它们有什么共同点?
(2)让学生在自己画的三角形上尝试标出边、角、顶点。(指生上台板演。)
2、概括三角形的定义。
(1)学生动手摆三角形。思考:什么样的图形叫三角形?(可结合课本理解)
(2)学生回答。
(3)你认为定义中哪些词最重要?(理解“三条线段”“围成”。)
3、用字母表示三角形。
为了表达方便,我们通常把三角形的三个顶点分别用字母A、B、C表示,这个三角形可以称作三角形ABC。
4、认识三角形的底和高。
(1)复习过直线外一点做已知直线的垂线段。
(2)小组合作学习三角形高的画法。
自学提示:什么是三角形的高?
作三角形的高用什么学具?
怎样作三角形的高?
(3)小组代表展示问题并演示三角形高的作法。
(4)思考:三角形有几条高?应怎样画它们?
(三)实验解疑,探索特性。
1、提出问题。
(课件出示图)同学们,在生活中三角形有着广泛的应用,仔细观察为什么把物体的这些部分做成三角形的,它具有什么特性?为了解决这个问题我们来做个实验吧。
2、实验解疑。
下面,请大家都来做一个实验。
学生拿出三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
(四)巩固运用,提高认识。
指导学生完成练习十五1、2、3题。
(五)课堂小结。
通过这节课的学习,你有什么收获?
五、板书设计
三角形的特性;
三角形有三个顶点,三个角,三条边;
由三条线段围成的图形叫做三角形;
三角形具有稳定性。
相似三角形的性质教学方案 6
学情分析
八年级学生普遍具有强烈的好奇心和求知欲,抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理。八年级也是学生开始分层的一个敏感年级。
教材分析
等腰三角形的性质是华东师大版八年级数学第十三章第三节第一课时5的内容,它是在认识了轴对称性以及了解了全等三角形的判定的基础上进行的。主要学习等腰三角形的“等边对等角”和“等腰三角形的三线合一”。本节内容既是前面知识的深化和应用,又是今后学习等边三角形的预备知识,还是证明角相等、线段相等及两直线互相垂直的依据,因此本节内容在教材中起着非常重要的承前启后的作用。
目标分析
根据《数学课程标准》中关于“等腰三角形”相关教学要求,结合教材特点和学生的实际情况,从而确定了“知识与技能、过程与方法、情感态度与价值观”的三维教学目标。
教学目标:
1、知识与技能
通过探究性学习实验,使学生发现等腰三角形“等边对等角”及底边上的高、底边上的中线、顶点的平分线互相重合的性质。
2.过程与方法目标
通过性质的证明和例题的分析,培养学生多角度分析问题的习惯,提高学生分析问题和解决问题的能力。
3.态度价值观目标
要求学生在学习中运用发现法,体验几何发现的乐趣,使学生进一步了解发现真理的方法。让实际操作动手中感受数学之美,探究之趣。
教学重点和难点:
重点:等腰三角形两底角相等、等腰三角形“三线合一”。因为等腰三角形的性质是今后学习线段垂直平分线的基础,也是今后论证角、边相等的重要依据,所以是本节教学的重点。
难点:等腰三角形“三线合一”的推理应用
教学方法和手段:
数学教育应该是数学再发现的教育,因此我设计本节课的教学与学法为探究发现法。
教法:以引导发现为主,直观演示为辅。
学法:自主探究,合作交流。
在教学中以学生参与为主,便于激发学生学习热情,体验成功的喜悦,通过直观的演示和学生自己动手,使学生在获得感性知识的同时,为掌握理性知识创造条件,这样更有利于调动学生积极性,激发学生兴趣,使学生变被动学习为积极主动愉快学习,也符合数学教学的直观性和可接受性。
课前准备:
教师:多媒体课件、三角板
学生:剪刀,矩形纸片
教学过程:
一、创设情境,导入新课
1、影片引入
伴随着教师制作的一段微视频,师生一起走进生活中经常能见到的等腰三角形图形,品味数学。
设计目的:使学生感受到等腰三角形在生活中有着广泛的应用,同时感受数学之美。
2、温故而知新
回忆等腰三角形的有关概念。
二、动手操作,猜想论证
1、动手剪一剪
学生利用手里的矩形纸片和剪刀,剪纸并回答问题。
设计目的:直观感受等腰三角形的对称性,激发学生的学习兴趣。
2、动手做一做
师:将手中的等腰三角形对折,让两腰重合,启发学生大胆猜想。
设计目的:由学生自己动手参与折纸游戏,大胆猜测等腰三角形的性质,这种直观的低起点的方式引入新课更能提高学生兴趣,激发他们的求知欲,让每位学生都涌跃参与,领悟数学学习的价值。
3、千古数学一大猜
学生对等腰三角形有一定的认识与了解,很容易从角这个角度猜想出:等腰三角形的两个底角相等。
三、证明猜想,形成定理
1、猜想与论证
猜想的结论不一定正确,要经过合理的推理证明才能确认正确,所以我设计了两个问题。
首先PPT展示“猜想一:等腰三角形的'两个底角相等。”
提出问题一:你能把这句话用数学语言表达吗?
学生回答正确后,提出问题二:如何证明这两个角相等呢?
设计目的:通过第一个问题的解答,使学生的思路会逐步变得清晰,化解了第二个问题的难度,引导学生为解决问题寻找做辅助线的方法。
学生会有三种添加辅助线的方法:做顶角的平分线、底边上的高,底边上的中线,请学生自选一种方法进行证明。
2、请你分享
最有效的学习是讲给别人听,请学生分享自己的证明方法,发展他们的智慧,完善他们的人格。
给出其中一种即做底边上高这种做辅助线方法的证明过程,并规范学生的书写格式。
设计目的:让学生自己证明猜想,有利于学生对全等三角形的判定的巩固,既运用以旧引新的推理方式,又体现由特殊到一般的思维认识规律。采用这种探索发现的方式,让学生通过对直观图形的观察猜想,实验证明去揭示定理。同时也展示了猜想——证明这一数学认知基本方法。
3、得到性质1的结论
“等腰三角形的两底角相等。”
用数学语言进行书写,并规范学生的书写。
四、例题讲解,练习提高
例题和练习一共有三个题目,设计了三个层次:一个层次是直接利用性质1,第二个层次是需要分类讨论,第三个层次在分类讨论的基础上需要考虑实际情况。
设计目的:1、巩固学生对性质1的理解
2、培养学生分类讨论的思想,增加他们学习的兴趣。
五、回味儿,再次猜想
1、请学生利用手里的等腰三角形纸片折叠或者在直接在纸片上做出等腰三角形底边上的高,底边上的中线,顶角的平分线。学生在此过程中会发现这三条线段重合。
通过对线段AD的分析,使学生发现性质2:“三线合一”。
设计目的:性质探索的过程,不仅体现了知识的发生发展过程,还培养了学生的创新意识、合作意识、探究意识、转化意识,在这个过程中教师要宽容的接纳生成,理智的处理生成。
2、得到性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。简称“三线合一”。
用数学符号语言进行书写,并规范学生的书写。
设计目的:用符号语言表示性质,可以让学生意识到“三线合一”是证明角相等,线段相等,直线垂直的重要依据。
3、请学生利用手里的等腰三角形纸片折叠或者在直接在纸片上做出等腰三形某一腰上的高,同一腰上的中线,底角的平分线。强调等腰三角形“三线合一”条件。
设计目的:学生对性质2相对于性质1要陌生,所以要求学生通过折纸或者在等腰三角形纸片上作图来得到等腰三角的三线合一的条件必须和底边有关。
六、千锤百炼,综合运用
1、第一类题型:基础类
设计目的:巩固基础知识
2、第二类题型:提高类
设计目的:学习方法的形成的本节课的一个难点。
七、畅所欲言,归纳总结
学生谈收获。
设计目的:学生自己归纳总结,进一步突出学生的主体地位,有利于学生学习后养成及时反思的习惯,教师也能及时的了解教学中的一些情况。
八、学无止境,课堂提升
这一部分我设计了一道能力提升的题目,上课时看课堂最后所剩的时间灵活处理。
设计目的:这个环节我主要设计了能力提升的题目,从学生知识和兴趣的角度,有针对性的提高学生综合应用知识的能力,延续课堂,为下一节课等腰三角形的判定做准备。
九、布置作业
必做部分:P81:1,2,3
选做部分:P81:4
板书设计:
13.3.1等腰三角形
性质1:“等边对等角”
性质2:“三线合一”
反思:
本节课,我从学生身边的生活入手引入,以学生自主探索、合作交流为主线,让学生经历数学知识的形成与应用过程,加深对所学知识的理解,从而突破重难点。整节课是一个动脑猜想、动眼观察、动手操作、实践验证、巩固应用的动态生成过程,充分发挥了学生的主观能动性,学生真正成为了学习的主人。
相似三角形的性质教学方案 7
(一).知识目标:
1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(二)能力目标:
1、定理的引入培养学生对命题的抽象概括能力,加强发散思维的训练。
2、定理的证明培养学生“转化”的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论”的思想。
3、定理的应用,培养学生进行独立思考,提高独立解决问题的能力。
(三)情感目标:
在教学过程中,引导学生进行规律的再发现,激发学生的审美情感,与现实生活有关的实际问题使学生认识到数学对于外部世界的完善与和谐,使他们有效地获取真知,发展理性。教学重点:等腰三角形的性质定理及其证明。
教学难点:问题的证明及等腰三角形中常用添辅助线的方法。教学方法:引导发现法、探究法、讲解法、练习法教学过程:
一.复习引入: 1.三角形按边怎样分类? 2.什么叫等腰三角形? 3.一般三角形有那些性质? 4.同学们都很熟悉人字梁屋架(出示图形),它的外观构形就是等腰三角形。等腰三角形除了具有一般三角形的性质外,还有那些特殊的性质?今天我们一起研究------等腰三角形的性质(揭示课题).
二.新课讲解:
1.动手实验,发现结论
[问题1]等腰三角形的两腰ab=ac,能否通过对折重合呢?(学生动手折叠课前准备好的等腰三角形)
通过实验,大家得出什么结论?[结论]等腰三角形的两个底角相等.[辨疑]从实际图形中发现结论,并验证结论,这也是探究几何问题的方法之一。但必须注意,由观察发现的'命题不一定是真命题,需要证明,怎样证明?
2.证明结论,得出性质
[问题2]关于几何命题的证明步骤是怎样的?(学生回答)启发学生找出题设和结论,画出图形,并写出已知、求证。[问题3]
证两角相等的常用方法是什么?(学生回答,要证两角所在的两个三角形全等)引导学生全面观察,联想,突破引辅助线的难关,并向学生渗透转化的数学思想。
[问题4]证明性质定理时,辅助线可不可以作成bc边上的高或中线?证明两三角形全等的方法有什么不同?引导学生分析后写出证明过程,同时总结等腰三角形常用辅助线的添加方法及其用。上述结论就是等腰三角形的性质定理:
等腰三角形的两个底角相等.简述成:等边对等角。
[说明]所谓等边对等角,是指在同一个三角形中有两条边相等,则这两边所对的两个角相等。这是在同一个三角形中证明两个角相等的常用方法。
3.巩固练习,加深理解练习一:
相似三角形的性质教学方案 8
一、教学目标
1.掌握相似三角形的性质定理2、3.
2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理的应用.
2.教学难点:是相似三角形的判定与性质等有关知识的.综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
叙述相似三角形的性质定理1.
[讲解新课]
让学生类比“全等三角形的周长相等”,得出性质定理2.
性质定理2:相似三角形周长的比等于相似比.
同样,让学生类比“全等三角形的面积相等”,得出命题.
“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.
性质定理3:相似三角形面积的比,等于相似比的平方.
注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.
(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.
例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm,求BC、AB、 .
此题学生一般不会感到有困难.
例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比.
教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.
解:设原地块为 ,地块在甲图上为 ,在乙图上为
学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而
[小结]
1.本节学习了相似三角形的性质定理2和定理3.
2.重点学习了两个性质定理的应用及注意的问题.
七、布置作业
教材P247中A组4、5、7.
八、板书设计
数学教案-相似三角形的性质
相似三角形的性质教学方案 9
【教学目标】:
1、掌握“直角三角形的两个锐角互余”定理。
2、巩固利用添辅助线证明有关几何问题的方法。
【教学重点】:直角三角形斜边上的中线性质定理的应用。
【教学难点】:直角三角形斜边上的中线性质定理的证明思想方法。
【教学过程】:
一、引入
复习提问:
(1)什么叫直角三角形。
(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质
二、新授
(一)直角三角形性质定理1 请学生看图形:
1、提问:∠A与∠B有何关系。为什么。
2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:
练习1:
(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数
(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A=,∠B=
练习2:在△ABC中,∠ACB=900,CD是斜边AB上的高,那么
(1)与∠B互余的角有
(2)与∠A相等的.角有 。
(3)与∠B相等的角有
(二)直角三角形性质定理2
1、实验操作:要学生拿出事先准备好的直角三角形的纸片
(l)量一量斜边AB的长度
(2)找到斜边的中点,用字母D表示
(3)画出斜边上的中线
(4)量一量斜边上的中线的长度
让学生猜想斜边上的中线与斜边长度之间有何关系。
三、巩固训练:
练习3 :在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习4: 已知:∠ABC=∠ADC=90O,E是AC中点。求证:
(1)ED=EB (2)∠EBD=∠EDB
(3)图中有哪些等腰三角形。
练习5: 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。如果连接DE,取DE的中点O,那么MO 与DE有什么样的关系存在
四、小结:
这节课主要讲了直角三角形的那两条性质定理。
1、直角三角形的两个锐角互余。
五、布置作业
直角三角形的性质
相似三角形的性质教学方案 10
一、教学目标
1、知识技能:
(1)掌握等腰三角形的性质。
(2)运用等腰三角形的性质进行证明和计算。
2、数学思考:
(1)观察等腰三角形的对称性,发展形象思维。
(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。
3、问题解决:
(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。
(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。
4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。
二、教学方法:实验法和探究法。
三、重难点:
重点是等腰三角形的性质及应用。
难点是等腰三角形性质的证明。
四、教学过程
(一)创设情境,引入新课
人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的'人类建筑中都含有一个什么样的基本图形?师1:同学们,这几张图片中共同存在的基本图形是什么?
等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。(板书)12.3.1等腰三角形
(二)探究发现,学习新知1.认识等腰三角形师1:在小学时我们就知道两条边相等的三角形叫做等腰三角形。
下面我们利用剪纸的方法将手中的矩形纸片变变形。请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。
观察这个等腰三角形,我们称相等的边叫做——腰,那么另一边叫做——底边,两腰的夹角叫做——顶角,腰和底边的夹角叫做——底角。2.探究等腰三角形的性质
(1)观察猜想
师1:接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么?师2:仔细观察:将等腰三角形abc沿折痕对折,请大家找出其中重合的线段和角。哪位同学可以发表一下自己的看法?
师3:这些线段是互相重合的,它们存在什么数量关系?重合的角呢?师4:通过刚才的分析,由这些重合的线段和角,你能发现等腰三角形的性质吗?说一说你的猜想。
(板书)猜想①等腰三角形的两个底角相等.猜想②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(2)实验操作
师1:请同学们用心观察等腰三角形abc:随着等腰三角形的形状变化,观察两个底角是否永远相等?这说明什么?
师2:请同学们再认真观察,随着等腰三角形的形状变化,ad是否永远是顶角的平分线、底边上的中线、底边上的高?这又能说明什么?
(3)推理论证
师1:来看猜想1等腰三角形的两个底角相等。将这个命题改写成“如果—那么—”的形式,该如何叙述?
师2:这个命题的题设和结论分别是什么?师3:如何进行证明呢?师4:谁还有其它证明方法吗?
今天大家从不同角度添加辅助线,将等腰三角形问题转化成全等三角形问题,进而证明出等腰三角形的性质1,接下来,请大家将性质1齐读1遍。性质1简称:等边对等角。下面我们用符号语言描述性质的因果关系。同学们一定要注意,在应用“等边对等角”时必须是在同一个三角形中。师5:由性质1的证明过程,你能不能证明出猜想2呢?下面让我们一同观察性质1的证明过程,在作出等腰三角形顶角平分线的基础上,由三角形全等,我们还能得到什么结论?
师6:类比这种证明方法,当我们作出等腰三角形底边上的中线时,又能得到什么结论呢?
师7:当我们作出底边上的高呢?
经过证明它平分顶角并平分底边。通过刚才的证明,我们得到三个结论,这三个结论我们能否用一句话概括?也就证明出了性质2。接下来,我们来看一组填空题,这就是性质2的数学符号表述。仔细观察这三组符号语言,在等腰三角形的前提下,我们只要知道顶角平分线、底边上的中线、底边上的高这三个条件中的任意一条,即可推出其余两个是成立的。
等腰三角形的性质为我们今后证明两条线段相等、两个角相等提供了重要依据。
3.辩证思考等腰三角形的性质:
我们再来看性质2“等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合”,那么底角的平分线,腰上的中线和高是否互相重合?请大家动手折叠来说明。师1:重合吗?
所以等腰三角形的性质2必须强调的是顶角平分线、底边上的中线、底边上的高互相重合。
(三)理解记忆,实际应用
利用我们今天所学的主要内容:等腰三角形的性质,能解决什么样的具体问题?请看例1,独立思考第(1)(2)问,有答案,请举手。
师1:请大家观察∠bdc是等腰△abd的外角,思考∠bdc与∠a有何数量关系?
师2:思考第(3)问,如何求各角的度数?请同学们在练习本上求解第(3)问。
师3:答案是什么?
这道题目我们结合图形,利用方程进行求解,可以使我们的表述更加清晰。下面请大家再看一个例题,齐读例2,有思路,请举手回答。师4:谁还有其它不同的方法得出∠1?
(四)反馈新知,巩固练习。下面,我们进行两组小练习,看看谁的速度快?
师1:通过这两个题目,你有什么发现?我们发现在等腰三角形中,若已知角为锐角,则它既可以作为顶角,也可以作为底角,需要分情况讨论;若已知角为钝角,则它只能作为顶角。
(五)回顾反思,归纳升华。
通过今天的数学学习,你有哪些收获?
(六)划分层次,布置作业。
(a)p56 1,4;(b)p56 1,4,6.最后,给大家布置一个兴趣作业:利用等腰三角形设计一个电子作品。同学们,让我们用心去体悟图形的美,努力去创造美,炫出我们的精彩吧!
相似三角形的性质教学方案 11
学习目标:
1、认识现实生活中物体的相似,能利用相似三角形的性质解决一些简单的实际问题。
2、通过把实际问题转化成有关相似三角形的数学模型,培养分析问题、解决问题的'能力.
学习过程:
一、创设情景,引入新课
1、说一说相似三角形的判定方法有哪些,相似三角形的性质有哪些?
2、大家都知道矗立在城中的科技大楼是我们这里比较高的楼,那么科技大楼有多高呢?
我们如何用一些简单的方法去测量出科技大楼的高度呢?
二合作交流,解读探究
导入新课:阅读课本73页例6完成下列任务:
例6中当金字塔的高度不能直接测量时,本题中构造了_______和_______相似,且_______、________、_________是已知或能测量的。
说一说测量金字塔高度的方案并加以证明。
【学法指导】同一时刻太阳光是平行直线,从而得到角相等,得到相似三角形。
例7中河的宽度也是无法直接测量的,本题中构造了_________和________相似,且_______、__________、__________是已知或能测量的。
说一说测量河的宽度的方案并加以证明。
【相似三角形的性质教学方案】相关文章:
等腰三角形的性质教案07-10
幼儿园小班三角形教学方案06-21
小数的性质06-15
减法的运算性质教案11-02
审计报告的性质11-06
教学的方案04-15
会议总结特点和性质08-24
教学方案04-22
不等式的性质教案01-23
分数的基本性质教案04-04