教案

六年级下册数学《圆柱的表面积》教案

时间:2025-03-05 16:20:17 晓映 教案 我要投稿

人教版六年级下册数学《圆柱的表面积》教案(通用15篇)

  作为一位不辞辛劳的人民教师,通常需要准备好一份教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。教案应该怎么写呢?下面是小编为大家收集的人教版六年级下册数学《圆柱的表面积》教案,欢迎阅读与收藏。

人教版六年级下册数学《圆柱的表面积》教案(通用15篇)

  六年级下册数学《圆柱的表面积》教案 1

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

  教学重点,难点:

  掌握圆柱侧面积和表面积的计算方法。

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、引入新课:

  前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

  1.圆柱是由平面和曲面围成的立体图形。

  2.圆柱各部分的名称(两个底面,侧面,高)。

  3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

  二、探究新知:

  以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

  同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

  教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

  板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

  1.圆柱的侧面积

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的`长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习二第5题

  学生审题,回答下面的问题:

  这两道题分别已知什么,求什么?

  小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3.理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4.尝试练习。

  (1)求下面各圆柱的侧面积。

  ①底面周长2.5分米,高0.6分米。

  ②底面直径8厘米,高12厘米。

  (2)求下面各圆柱的表面积。

  ①底面积是40平方厘米,侧面积是25平方厘米。

  ②底面半径是2分米,高是5分米。

  5.小结:

  在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

  三、巩固练习。

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2.练习二第6,7题。

  四、课后思考。

  同学们想一想是不是所有的圆柱在计算表面积时都可以用

  公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

  六年级下册数学《圆柱的表面积》教案 2

  教学目标

  1 .理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

  2 .能正确地计算圆柱的表面积。

  3会解决简单的实际问题。

  4 .初步培养学生抽象的逻辑思维能力。

  教学重点

  理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

  教学难点

  能充分运用圆柱表面积的相关知识灵活的解决实际问题。

  教学过程

  一复习旧知。

  1计算下面圆柱的侧面积。

  (1)底面周长2.5米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  2求出下面长方体、正方体的表面积。

  (1)长方体的长为4厘米,宽为7厘米,高为9厘米。

  (2)正方体的棱长为6分米。

  3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

  学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

  学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

  二新课导入。

  1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的`求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

  2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

  (1)学生分组讨论。

  (2)学生汇报讨论结果。

  3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

  4教师进行圆柱模型表面展开演示。

  (1)学生说说展开的侧面是什么图形。

  学生:圆柱展开的侧面是一个长方形。

  (2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

  学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

  (3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)

  (3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

  5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

  学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

  教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

  三新课教学。

  1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

  2学生尝试练习,教师巡回检查、指导。

  3反馈评价:

  (1)侧面积:2×2×3.14=56.52(平方分米)

  (2)底面积:3.14×2×2=12.56(平方分米)

  (3)表面积:56.52+12.56=81.64(平方分米)

  答:它的表面积是81.64平方分米。

  4学生质疑。

  5教师强调答题过程的清楚完整和计算的正确。

  6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

  四反馈练习:试一试。

  1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  2学生交流练习结果(注意计算结果的要求)。

  3教师评议。

  教师:在实际运用中四舍五入法和进一法有什么不同?

  学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

  五拓展练习

  1教师发给学生教具,学生分组进行数据测量。

  2学生自行计算所需的材料。

  3计算结果汇报。

  教师:同学们的答案为什么会有不同?哪里出现偏差了?

  学生甲:可能是数据的测量不准确。

  学生乙:可能是计算出现错误。

  教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

  六巩固练习。

  1计算下面图形的表面积(单位:厘米)(略)

  2计算下面各圆柱的表面积。

  (1)底面周长是21.52厘米,高2.5分米。

  (2)底面半径0.6米,高2米。

  (3)底面直径10分米,高80厘米。

  3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

  4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

  六年级下册数学《圆柱的表面积》教案 3

  一、教学目标:

  1、首先带动课堂气氛

  2、教会学生什么是面积。

  3、学习圆柱体侧面积和表面积的含义。

  4、能够求圆柱的侧面积和表面积的方法。

  二、教学重点:

  动手操作展开圆柱的侧面积

  三、教学难点:

  圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  四、教具准备:

  圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

  五、教学过程:

  (一)、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说)

  师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:.......

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  (二)、探索交流,解决问题。

  圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)

  1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

  2.操作活动:

  (1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3.小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。(选出一个学生已经展开的`图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长×宽

  ↓ ↓ ↓

  圆柱的侧面积=底面周长×高

  所以,圆柱的侧面积=底面周长×高

  S侧= C×h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  (四)、练习

  求圆柱的侧面积(只列式不计算)

  1、底面周长是1.6米,高是0.7米

  2、底面直径是2分米,高是45分米

  3、底面半径是3.2厘米,高是5分米

  (五)研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积×2 4.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

  (六),巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  3.一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

  六、教学结束:

  布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

  六年级下册数学《圆柱的表面积》教案 4

  圆柱的表面积练习课

  教学内容:教材14页例4和练习二余下的练习。

  教学目标:

  1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

  教学重点:

  运用所学的知识解决简单的实际问题。

  教学难点:

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、复习

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

  3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)

  二.教学例4

  (1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)

  (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)

  (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)

  ① 侧面积:3.14×20×28=1758.4(平方厘米)

  ②底面积:3.14×(20÷2)2=314(平方厘米)

  ③表面积:1758.4+314=2072.4≈2080(平方厘米)

  5.小结:

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.

  三、指导练习

  1、练习二第9题

  (1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  2、练习二第17题

  先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。

  3、练习二第13题

  (1)复习长方体、正方体的表面积公式:

  长方体的表面积=(长×宽+长×高+宽×高)×2

  正方体的表面积=棱长×棱长×6

  (2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。

  4、练习二第19题

  (1)学生小组讨论:可以漆色的面有哪些?

  (2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。

  (3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。

  四、布置作业

  练习二第10、15、20题

  第三课时教学反思

  学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的'问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果2072.4按四舍五入法保留整十数应该约等于2070,可为什么教材中应是约等于2080?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:

  做通风管需要多少铁皮

  圆柱形水池的占地面积

  做无盖的圆柱形水桶需要多少铁皮

  做圆柱形油桶需要多少铁皮

  卫生纸中间硬纸轴需要多大的硬纸板

  求水池底部和四周贴瓷砖的面积

  压路机滚筒滚动一周的面积

  (1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和

  指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。

  两个惊喜

  1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以S底:S侧=(πrr):(2πrh)=r:2h,2S底:S侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。

  2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。

  六年级下册数学《圆柱的表面积》教案 5

  设计说明

  本节课的教学是在学生对圆柱的组成和特征已有初步认识,并且掌握了长方体、正方体表面积的计算方法的基础上进行的。根据学生的认知基础及培养学生的数学思维能力和空间想象能力,在教学设计上有以下特点:

  1.利用迁移、猜想,理解圆柱表面积的意义。

  新课伊始,通过复习长方体表面积的相关知识,使学生由长方体表面积的意义联想到圆柱表面积的意义,这样使学生对圆柱表面积有了初步的理解,为进一步探究圆柱表面积的求法作铺垫。

  2.利用演示、分析探究圆柱表面积的求法。

  直观演示可以使学生获得丰富的感性材料,加深对知识本质的理解,有利于培养学生的形象思维能力,因此,在教学中不但要鼓励学生大胆猜想,还要借助多媒体教学,帮助学生建立起圆柱各部分之间的联系,使学生轻松得出结论。

  3.联系实际,解决问题。

  在实际生活中,应用圆柱的表面积公式解决问题,有时只需要计算圆柱的侧面积,有时要计算圆柱的侧面积和一个底面的面积,因此,在教学中要引导学生学会把自己的知识经验及解决问题的策略不断地构建、重组、内化、升华,使感性认识与理性认识同时得到提升。

  课前准备

  教师准备 PPT课件

  学生准备 圆柱形实物

  教学过程

  ⊙复习导入

  1.铺垫。

  师:长方体的表面积指的是什么?(6个面的面积之和)

  师:怎样求长方体的表面积?

  预设

  生1:长方体的'表面积=长×宽×2+长×高×2+宽×高×2。

  生2:长方体的表面积=(长×宽+长×高+宽×高)×2。

  2.迁移。

  (1)圆柱的表面积指的是什么?(三个面的面积之和)

  (2)怎样求圆柱的表面积?(生自由回答)

  3.导入。

  圆柱的表面积的求法与长方体的表面积的求法基本相同,都是求所有面的面积之和。这节课我们就来学习圆柱的表面积的相关知识。(板书:圆柱的表面积)

  设计意图:通过复习长方体的表面积的意义及求法,使学生建立起圆柱的表面积与长方体的表面积之间的联系,为进一步引导学生运用知识迁移的方法学习新知作铺垫。

  ⊙探究新知

  1.教学例3,探究计算圆柱表面积的方法。

  (1)理解圆柱表面积的意义。

  ①出示圆柱模型,观察思考:圆柱的表面积指的是什么?

  ②结合学生的回答,课件演示理解:圆柱的表面积指的是两个底面的面积加上一个侧面的面积。

  (2)探究圆柱表面积的求法。

  学生独立探究,然后汇报交流。

  ①圆柱的侧面积=底面周长×高。(强调长方形的长为圆柱的底面周长,宽为圆柱的高)

  用字母表示为S侧=Ch。

  ②底面积=πr2。

  ③圆柱的表面积=圆柱的侧面积+两个底面的面积。用字母表示为S表=Ch+2πr2。

  2.教学例4,解决求圆柱表面积的实际问题。

  课件出示例4。(利用圆柱表面积的计算方法解决实际问题)

  (1)学生读题,找一找这道题的所求问题。

  明确:求做这样一顶帽子至少要用多少平方厘米的面料,就是求圆柱的表面积。

  (2)想一想:怎样求这个圆柱的表面积呢?

  ①一顶帽子由几部分组成?

  (一个侧面+一个底面)

  ②明确解题思路及解法。

  先求帽子的侧面积:帽子的侧面积=πdh。

  再求帽顶的面积:帽顶的面积=πr2。

  最后求帽子的侧面积与帽顶的面积之和。

  师:解题时需要注意什么?

  六年级下册数学《圆柱的表面积》教案 6

  设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的'计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

  六年级下册数学《圆柱的表面积》教案 7

  教材分析

  本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

  学情分析

  由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

  教学目标

  知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的'表面积的方法,并能解决实际问题。

  情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

  教学重点和难点

  重点:教师引导,动手操作得出求圆柱表面积的方法。

  难点:计算方法在生活中的应用。

  教学过程

  一、复习导入:

  1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

  2、圆面积怎样求?

  3、长方形的面积呢?

  二、创设情境,引起兴趣:

  出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

  三、 自主探究,发现问题。

  1、分组,讨论:

  (1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

  圆柱的侧面剪开发现侧面是一个长方形(正方形),

  侧面积=长方形的面积=长×宽=地面周长×高。

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  (2)、复习引导:(用旧解新)

  上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

  (3)、小结:小组讨论,将公式延伸。

  圆柱表面积 = 圆柱的侧面积+底面积×2

  =Ch+2π r2

  =πdh+2π r2

  2、知识的运用:(回到情景创设)

  (1)、出示例题:

  例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

  (2)、独立试做:

  (3)、集体讲评。

  (4)、讲解进一法。

  3.巩固练习:

  四、课堂总结:

  这一节课重点学习了圆柱表面积的计算方法及运用。

  六年级下册数学《圆柱的表面积》教案 8

  教学内容:

  教材第4~5页例2、例3和练一练及练习一。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:

  教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:

  掌握圆柱侧面积的计算方法。

  教学难点:

  能根据实际情况正确地进行计算。

  教学过程:

  一、铺垫孕伏:

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二、自主研究:

  1.认识表面积计算方法。

  (1) 请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的'对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

  5.组织练习。

  (1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

  六年级下册数学《圆柱的表面积》教案 9

  教学目标

  1.经历认识圆柱展开图和探索表面积计算方法的过程。

  2.认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

  3.积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

  教学重点

  圆柱体表面积公式的推导。

  教学难点

  运用表面积公式计算实际图形的表面积。

  教具准备

  圆柱表面展开示意图。

  教学过程

  一、读题导入

  1.齐读课题。

  师:看到这个课题,你们想到了哪些与之相关的知识。

  生:长方体和正方体的表面积;圆柱的底面和侧面。

  2.复习相关知识

  (1)什么是长方体、正方体的表面积?它们是怎么计算的?

  二、探索新知

  1.课件出示圆柱,揭示圆柱的表面积公式

  师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。

  生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。

  2.教学圆柱的表面积

  (1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。

  (2)谁还记得圆柱侧面积的计算公式。

  学生:圆柱的侧面积=底面周长高

  (3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。

  (4)议一议:怎样求圆柱的表面积?学生讨论。

  学生:圆柱的表面积就是用圆柱的侧面积加上两个底面积。

  (4)教学例题:

  出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。

  (5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。

  三、练习

  试一试

  (1)提出试一试的问题,让学生尝试计算。

  (2)交流计算的.过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。

  四、巩固

  练一练1:则由学生独立完成。

  练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。

  练一练3:先指导学生明确解决问题的思路,再自主解答。

  五、家庭作业

  自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。

  六年级下册数学《圆柱的表面积》教案 10

  教材内容:23-24页

  教学目标:

  1、进一步巩固圆柱侧面积、底面积、表面积的计算方法,体会这些计算方法的联系和区别。

  2、引导学生运用所学的圆柱表面积的知识解决相关的实际问题。

  教学重难点:

  通过解决实际问题,加深学生对圆柱表面积计算方法的理解,培养学生灵活运用所学的知识解决实际问题的能力,发展学生的空间观念。

  教学具准备:

  与练习六中的练习相关的图片。

  教学过程:

  一、复习引入

  1、什么是圆柱的表面积?包括哪几个部分?怎么求圆柱的'表面积?其中圆柱的底面积怎么算?侧面积呢?

  2、揭示要求:这节课,我们要运用所学的有关知识,解决生活中的相关问题,希望通过问题的解决,来加深对圆柱表面积的认识。

  二、基本练习

  1、出示练习六第3题,理解表格意思。

  2、第一行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  3、第二行中,已知什么?怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后填写在书中表格里,再交流方法和得数。

  4、如果已知一个圆柱的底面周长是6.28分米,高是3分米,怎么算出这个圆柱的侧面积、底面积和表面积?

  各自计算,算后交流方法和得数。

  三、综合练习

  1、完成练习六第4题。

  ⑴讨论:求做这个通风管要多大的铁皮,实际上是算哪个面的面积?为什么?

  ⑵各自练习后交流算法。

  2、完成练习六第5题。

  ⑴讨论:需要糊彩纸的面是什么?要求彩纸的面积就是算圆柱的哪几个面积?为什么?

  ⑵各自练习后交流算法和结果。

  3、讨论练习六第7题。

  ⑴出示“博士帽”问:认识它吗?什么样的人可以拥有博士帽?

  ⑵看看,这个博士帽是怎么做成的,包括哪几个部分?

  ⑶出示条件:这个博士帽上面是边长30厘米的正方形,下面的底面直径16厘米,高为10厘米的圆柱。

  你能算出,做一顶这样的博士帽需要多少平方分米的黑色卡纸?

  ⑷各自计算,算后交流算法和结果。

  ⑸如果要做10顶呢?怎么算?

  3、讨论练习六第8题。

  ⑴出示题目,让学生读题,理解题目意思。

  ⑵讨论:塑料花分布在这个花柱的哪几个面上?

  要算这根花柱上有多少朵花,需要先算出哪几个面的面积?分别怎么算?

  算出上面和侧面的面积后,怎么算?为什么?

  4、讨论解答练习六第9题。

  ⑴出示题目,读题,理解题目意思。

  ⑵尝试列式。

  ⑶交流算法:

  这题先算什么?再算什么?最后算什么?

  怎么算一根柱子的侧面积的?为什么不要算底面积?

  四、全课

  五、作业:练习六6、7、8、9题。

  六年级下册数学《圆柱的表面积》教案 11

  教学目标:圆柱表面积的,掌握圆柱表面积的计算方法,并能正确地计算圆柱的表面积。会解决简单的实际问题。

  教学重点:掌握表面积的计算方法

  教学难点:运用所学的知识解决简单的实际问题

  教具准备:圆柱的'展开图

  教学过程:

  一、复习

  1、指名学生说出圆柱的特征。

  2、圆柱的侧面积=底面周长高

  3、计算下面各圆柱的侧面积。

  (1)底面2.5周长米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  4、提问:圆柱的侧面积加两个底面的面积就圆柱的什么?(表面积)

  二、教学表面积。

  那么,圆柱的表面积是什么?明确:圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  板书:圆柱的表面积=圆柱侧面积+两个底面的面积

  1、教学例2。

  出示例2的题目:一个圆柱的高是4.5分米,底面半径是2分米,它的表面积是多少?

  (1)这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?

  (2)我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数

  据标在图上。现在我们把这个圆柱展开。出示展开图,如下:

  2、小结:计算表面积时,一定要分步计算。先求什么,后求什么,再求什么。(提问)

  3、出示试一试:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  (1)这道题已知什么?求什么?这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

  (2)要计算做这个水桶需要多少铁皮,应该分哪几步?

  教师行间巡视,注意察看最后的得数是否计算正确。

  (3)指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  三、课堂小结。

  在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

  四、巩固练习。

  练一练第1~4题。

  五、《作业本》第2页。

  六年级下册数学《圆柱的表面积》教案 12

  【教学内容】

  教科书第31~33页例1,例2,课堂活动,练习七的2~6题。

  【教学目标】

  1.理解圆柱表面积的含义。

  2.掌握圆柱的表面积的计算方法,会正确地计算圆柱的表面积。

  3.能灵活运用求表面积的有关知识解决一些简单的实际问题。

  【教学重点】

  理解求圆柱的表面积的计算方法并能正确计算。

  【教学难点】

  灵活运用表面积的有关知识解决实际问题。

  【教学准备】

  炉筒、水桶、油漆桶、易拉罐桶、卷尺等。

  【教学过程】

  一、情境引入

  谈话:(出示水桶)昨天,我们家邻居的几个小孩在玩耍的时候,不小心将张奶奶的水桶弄坏了,为了表示歉意,几个小孩准备做一个一样大小的新水桶还给张奶奶,可是不知道要用多少铁皮,就跑来问我。我经过计算告诉了他们,你知道老师是怎样计算的吗?那你想不想学习解决这个问题的方法呢?这节课,我们就来研究圆柱的表面积。

  这节课,我把平常看到的炉筒、水桶、油漆桶等圆柱都请上了我们的数学课堂,就让我们通过它们来获取我们想要的知识。

  二、小组合作,探索方法

  1.探索侧面积的计算方法

  出示水桶,教师提问:水桶的侧面展开是什么形状呢?我们用易拉罐来做个实验吧。

  学生分组实验,剪开易拉罐侧面的包装纸,展开观察思考,看能发现什么?

  组织学生交流,通过交流让学生明确:圆柱的侧面展开是一个长方形,长方形的长就是圆柱的底面周长,宽就是圆柱的高。

  教师提问:怎样计算圆柱的侧面积?

  通过学生的独立思考与交流,最后概括出:

  圆柱的侧面积=底面周长×高

  2.探索表面积的计算方法

  (1)观察实物,理解表面积的含义。

  请同学们仔细观察这三种物体,比较一下它们有什么不同。

  学生汇报。归纳出:

  炉筒:只有一个侧面。

  水桶:有一个侧面和一个底面。

  油漆桶:有一个侧面和两个底面。

  (2)探索表面积的计算方法

  根据三种物体的.实际构造,你们能想办法求出它们的表面积吗?(小组讨论)

  指生汇报,明确解决办法:

  炉筒表面积=侧面积

  水桶表面积=侧面积+一个底面积

  油漆桶表面积=侧面积+两个底面积

  3.教学例2

  (1)出示例2,让学生明确题中的信息及要解决的问题。

  (2)学生独立解决。

  (3)交流。教师重点提问:做水桶需要的铁皮应计算哪几个面的面积?为什么?

  三、课堂活动

  1.完成教科书第32页课堂活动

  (1)明确测量时的注意事项。

  教师引导学生明确,测量三个物体的相关数据:直径--先在圆上固定一点,尺子的另一端在圆上移动,寻找最大的距离,就是圆的直径。周长--可绕桶一周量出圆的周长。高--一定是两底之间的最短距离。

  (2)学生分组测量数据,计算三种物体的表面积。

  (3)交流。学生测量和计算可以稍有误差。

  教师提问:刚才同学们都是用"四舍五入"法取的近似值。在实际中,这样取能行吗?为什么?

  2.完成教科书33页第2题的计算

  在书上进行填表。及时反馈,矫正。

  3.拓展练习

  工人叔叔把一根高是1 m的圆柱形木料,沿底面直径平均分成两部分,这时表面积比原来增加了0.8 m2。求这根木料原来的表面积。

  四、课堂小结

  1.提出问题

  圆柱表面积的有关知识,在实际应用时要注意什么呢?还想到哪些问题?你能举一些例子来说明吗?(让学生展开思路,充分发言。老师还可以适当提示)

  2.小结

  老师根据学生发言,对本节课的知识进行总结,学生说得不够全面教师补充:应用圆柱的表面积有关知识解决实际问题时,要具体情况具体分析,根据实际需要来计算各部分面积,必须灵活掌握。另外,在生产中备料多少,一般采用进一法,目的就是为了保证原材料够用。

  五、课堂作业

  学生独立完成教科书第33页3~6题。

  六年级下册数学《圆柱的表面积》教案 13

  一、教材的分析与处理

  (一)教材简析

  我执教的内容是义务教育课程标准实验教科书人教版六年级下册第二单元《圆柱》的第二课时。

  本单元教学内容要求学生在认识圆柱的基础上,会求圆柱的侧面积和表面积,会应用圆柱的侧面积和表面积公式解决实际问题。本节课的重点是要求学生掌握圆柱体的侧面积、表面积的计算方法。学好这部分内容,可以进一步发展学生的空间观念,培养学生的空间想象能力、概括思维能力、分析综合等数学能力,为以后学习其它几何形体打下坚实的基础。

  (二)学情简析

  这部分内容是在学生掌握长方形面积、圆的面积计算方法的基础上安排的,因而要以这些知识为基础,运用迁移规律使圆柱体的侧面积、表面积的计算方法这一新知识纳入学生原有的认知结构之中。而且六年级的学生,已经具备一定的独立思维、探究能力。针对这一现状,我遵循“学生是学习的主人”这一原则,努力创设情境,让学生动手操作、观察发现,鼓励学生积极、主动地获取新知,促进知识的迁移,通过学生自身的“再创造”,轻松地获取圆柱侧面积的计算方法,从而突破教学重点,充分体现“学生是知识的发现者”这一理念。

  二、说理念

  新课程倡导让学生动手实践、自主探索与合作交流的学习方式,把操作看成是培养学生创新思维的源头活水,是实现课程理念的重要途径。在本节课中,我创设利于学生探究的活动,充分调动学生的手、眼、口、脑,放开学生的思维,让学生亲自去实践,动脑去想,发现问题,解决问题。在探究活动中,完成探究、发现和应用的过程。

  据此,我设计如下的教学目标:

  三、说教学目标

  1、知识目标:在探究活动中,使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  2、能力目标:培养学生观察、操作、概括的能力,以及利用知识合理灵活地分析、解决实际问题的能力。

  3、情感目标:培养学生初步的逻辑思维能力和空间观念,向学生渗透事物间的相互联系和相互转化的观点。

  4、教学重点:能应用圆柱体侧面积、表面积的计算方法解决实际问题。

  5、教学难点:探究圆柱体侧面积、表面积的计算方法。

  四、说教法与学法

  根据本节课知识特点以及学生的认知规律,我采用直观演示、动手操作、引导发现等方法,充分发挥学生的主体作用,引导学生在操作中观察、发现、概括,尝试总结出圆柱体的侧面积、表面积的计算方法。

  练习设计遵循了由易到难、循序渐进的原则,采用了填空、选择、解决问题等形式,使学生在交流、合作中,内化知识、训练思维、培养能力、形成技能,感受数学的魅力。

  五、教学程序设计

  为了充分体现教师的主导和学生的主体作用,能让学生积极主动、生动活泼地参与到教学过程中来,我以遵循学生的认知规律,组织合理有效的教学程序为原则,以动手操作为切入点设计了以下四个教学环节。

  (一)变魔术,激趣导入

  平面的面积学生已经会求了,而圆柱的侧面是个“曲面”,怎么样才能求出这个“曲面”的面积就成了圆柱表面积教学过程中的'难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。

  上课伊始,我发给每个学生一张完全一样的长方形的纸和两个完全一样的圆形(这两个圆形与用长方形纸卷成的圆柱体的侧面正好可以组成一个圆柱体)。让学生采用实验法,随意卷一卷、分一分,把一张长方形的纸变成一个圆柱形的纸筒。学生带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。

  (二)动手操作,探求新知

  1、动手操作,自主发现

  然后,我直接抛出问题:那么,这个圆柱的侧面的面积你能求吗?

  在学生自主探究以后,我点拨学生发现长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。

  这样抓住新旧知识内在联系,安排学生动手操作,引导学生在发现问题后及时动脑思考,不仅激发学生兴趣,同时也促进了学生思维能力的发展。

  2、尝试探究,引导发现

  教师先揭下两个圆片上和卷成的圆柱侧面的双面胶条,将圆柱组合好。然后提问:谁愿意到前面来摸摸这个圆柱的表面?

  然后小结:他摸过的所有这些面的面积的和就是这个圆柱体的表面积。

  接下来我请学生以同桌为单位,想办法求出这个圆柱体的表面积。

  在学生活动的过程中,我巡视、指导,帮助有困难的学生。

  在本环节中,在学生的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在学生的亲历探究实践中得到了突破。

  3、及时巩固,内化知识

  在教学重点基本突破后,我联系生活实际投影出示例4的厨师帽,让学生认真审题,并说厨师帽有几个面,再计算出用了多少面料,学生计算完后,要求得数保留整十平方厘米。启发学生看书发现新问题,讨论计算使用材料取近似值时,要用“四舍五入”法还是用“进一法”。从而使学生理解“进一法”的意义。这样充分发挥了学生的主体作用,也培养了学生独立思考能力和初步的逻辑思维能力。

  (三)尝试应用,解决问题

  这一环节是内化知识、训练思维、培养能力、形成技能的重要环节,因而我设计了多样的练习题。这些练习题注重了基本训练,又注重了能力训练,在形式上注意新颖、多样,在内容上注意采取循序渐进的原则,由易到难,这样既符合儿童的认知特点,又能兼顾大多数学生。

  (四)总结提升,思维延伸

  在课堂小结后,我提出“大家想一想,还有什么办法能求出计算圆柱体的表面积?”让学生充分思考、继续动手操作,将学生的思维向广度、深度延伸。(例如,可以把圆柱切开,拼成近似的长方体,由长方体的表面积计算公式推导出圆柱的表面积计算公式;还有的同学可能会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的表面积=底面周长×(圆柱的高+底面半径),用字母表示即S=2лr×(h+r)。)

  这不仅让学生知道了解决问题的方法是多种的,还使学生亲自参与了对新知的探索,使知识掌握得更加牢固,并对旧知进行再创造并萌发了创新意识,培养了学生的创新思维和创新能力。也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。将课堂的尾声又推向一个新的高潮。

  六、说教学手段

  本节课,我充分运用动手操作、观察、比较等手段,使学生明确圆柱侧面积与长方形面积之间的关系。自己探究出求圆柱侧面积、表面积的方法。

  七、说板书、板绘的设计

  板书采用了图示式的设计,直观展示本节课的知识点,与旧知的关系也表现得清晰、明了。有利于学生系统、清晰地掌握本节课的知识体系。同时圆柱的侧面积和表面积的计算方法都用红色显示,更加突出了本课重点,体现了板书的记忆理解功能。

  八、说预设效果:

  概括的说,本节课的教学过程设计,我力求体现以下几点:

  一是注重数学学习与现实生活的联系,本节课的教学从引入到过程的操作,我都注意引导学生用数学的眼光去观察认识身边的各种事物,体验到数学来源于生活,对研究数学产生比较浓厚的兴趣。

  二是强调数学学习的探索性、实践性。教学的引入,到教学过程的实践,乃至本节课的结尾始终都是学生在探究的过程。我力求在探究活动中增强数学内容的开放性,注重学生的情感体验和个性发展,强调学生学习数学的过程。

  三是注重师生交流、生生交流。做到让学生多思考、多动手、多实践,自主探究、合作学习、师生共同活动相结合,尽可能提高学生思维的参与程度,最大限度地拓宽学生的思维,使课堂充满生机与活力。

  六年级下册数学《圆柱的表面积》教案 14

  教学内容:教材第4~5页例2、例3和“练一练”及练习一。

  一、教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的`空间观念。

  教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:掌握圆柱侧面积的计算方法。

  教学难点:能根据实际情况正确地进行计算。

  二、教学过程:

  一、铺垫孕伏:

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  三、课堂小结

  这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。

  四、布置作业

  练习一第8、10、11题及数训。

  六年级下册数学《圆柱的表面积》教案 15

  【教学内容】

  圆柱的表面积(1)(教材第21页例3)。

  【教学目标】

  1、理解圆柱的表面积的意义。

  2、探索并掌握圆柱的侧面积和表面积的计算方法,会正确地计算圆柱的侧面积和表面积。

  【重点难点】

  1、掌握圆柱的侧面积和表面积的计算方法。

  2、理解圆柱的底面半径(直径)及圆柱的高和圆柱侧面的长、宽之间的关系。

  【教学准备】

  多媒体课件和圆柱体模型。

  【复习导入】

  1、复习引入。

  指名学生说出圆柱的特征。

  2、口头回答下面的问题。

  (1)一个圆形花池,直径是5m,周长是多少?

  (2)长方形的面积怎样计算?

  板书:长方形的面积=长×宽。

  【新课讲授】

  1、教师出示圆柱形实物,师生共同研究圆柱的侧面积。

  师:圆柱的侧面展开是一个什么图形?

  生:长方形。

  师:那么圆柱的侧面积与展开后的长方形的面积是什么关系?待学生回答后,教师板书:圆柱的侧面积=长方形的面积。

  师:长方形的面积=长×宽,长相当于圆柱的什么?宽呢?由此可以得出什么?

  教师待学生回答后接着板书“=圆柱的底面周长×高”,由此我们就找到了计算圆柱侧面积的方法。

  2、教学例3。

  (1)圆柱的表面积的含义。

  教师:你们知道长方体、正方体的表面积指什么?圆柱的表面积指的又是什么?

  通过讨论、交流使学生明确:圆柱的`表面积是指圆柱的侧面和两个底面的面积之和。

  (2)计算圆柱的表面积。

  ①师:圆柱的表面展开后是什么样的?

  组织学生将制作的圆柱模型展开,观察展开的面是由哪几部分组成的,并把它们都标出来。引导学生说出:圆柱的表面是由两个底面和一个侧面组成。

  ②组织学生自主探究、交流,该如何计算圆柱的表面积。指名发言,教师归纳:圆柱的表面积=圆柱的侧面积+两个底面积。

  (3)巩固练习:教材第21页“做一做”。组织学生独立完成,请两名学生板演后集体订正。

  答案:628cm2

  【课堂作业】

  完成教材第23页练习四的第2~6题。

  第2题教师提醒学生用圆柱形的纸筒代替压路机前轮滚动一周,使学生看到所压路面的面积就是前轮的侧面积。

  第3、4题是解决问题。先让学生弄清楚是求圆柱哪部分的面积,然后再计算,必要时,可通过教具或图形帮助学生直观理解。

  第5题,对于有困难或争议大的,可用实物或模型直观演示。

  第6题,是实际测量、计算用料的题目,可以分组进行测量和计算。

  答案:

  第2题:3、14×1、2×2=7、536(m2)

  第3题:3、14×1、5×2、5=11、775(m2)

  第4题:3、14×3×2+3、14×(3÷2)2=25、905(m2)

  第6题:长方体:800cm2正方体:216dm2圆柱:533、8cm2

  【课堂小结】

  通过这节课的学习,你有哪些收获?

  【课后作业】

  完成练习册中本课时的练习。

  第2课时圆柱的表面积(1)

【六年级下册数学《圆柱的表面积》教案】相关文章:

圆柱的表面积六年级数学下册教案03-26

圆柱的表面积数学教案03-26

数学六年级上册圆柱的表面积教案03-26

(北师大版)六年级数学下册 圆柱表面积的计算教案03-26

《圆柱的认识》六年级数学下册教案03-26

数学《圆柱的认识》教案03-26

冀教版六年级数学下册圆柱的体积教案03-26

六年级数学下册第三单元圆柱与圆锥的教案03-25

北师大版六年级数学下册圆柱的体积教案03-26