平行线的性质的教案设计

教案 时间:2018-12-01 我要投稿

  【教学目标】

  1。经历从性质公理推出性质2的过程;掌握平行线的性质,并能用它们作简单的逻辑推理;

  2。感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用。

  【教学重点】

  平行线的性质以及应用。

  【教学难点】

  平行线的性质公理与判定公理的区别。

  【对话设计】

  〖探索1〗反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数。反过来,如果两个数互为相反数,那么这两个数的和为0。这两个句子都是正确的。

  现在换一个例子:如果两个角是对顶角,那么这两个角相等。它是对的。反过来,如果两个角相等,这两个角是对顶角。对吗?

  再看下面的例子:如果一个整数个位上的数字是5,那么它一定能够被5整除。对吗?这句话反过来怎么说?对不对?

  〖结论〗如果一个句子是正确的,反过来说(因果对调),就未必正确。

  〖探索2〗

  上一节课,我们学过:同位角相等,两直线平行。反过来怎么说?它还是对的吗?完成P21的探究,写出你的猜想。

  〖推理举例〗

  如果把平行线性质1———"两直线平行,同位角相等"看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:"两直线平行,内错角相等"。

  如图,已知:直线a、b被直线c所截,且a∥b,

  求证:∠1=∠2。

  证明:∵a∥b,

  ∴∠1=∠3(__________________)。

  ∵∠3=∠2(对顶角相等),

  ∴∠1=∠2(等量代换)。

  〖探索3〗下面我们来证明平行线的性质3:两直线平行,同旁内角互补。请模仿范例写出证明。

  如图,已知:直线a、b被直线c所截,且a∥b,

  求证:∠1+∠2=180?。

  证明:

  〖探索4〗

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2。根据什么?

  (2)若∠1=∠2,可以得到a∥b。根据什么?根据和(1)一样吗?

  〖练习1〗如图,已知直线a、b被直线c所截,在括号内为下面各小题的推理填上适当的根据:

  (1)∵a∥b,∴∠1=∠3(___________________);

  (2)∵∠1=∠3,∴a∥b(_________________)。

  (3)∵a∥b,∴∠1=∠2(__________________);

  (4)∴a∥b,∴∠1+∠4=180?

  (_____________________________________)

  (5)∵∠1=∠2,∴a∥b(___________________);

  (6)∵∠1+∠4=180?,∴a∥b(_______________)。

  〖练习2〗

  画两条平行线,说出你画图的根据;再任意画一条直线和这两条平行线都相交,写出所生成的角当中的一对内错角,并说明这一对角一定相等的理由。

  〖作业〗

  P25。1、2、3、4。

相关推荐